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analysis of original data and loading spectrum of fPC1 were identified 
(Betaine, Dimethylamine, Glucose, Mannitol, N, N-Dimethylglycine, 
and b -Alanine). These compounds belong, respectively, to the 
families of ammonium, amines, sugar and amino acids and can be 
used as potential biomarkers in human urine for detection of diabetes. 
Moreover, our study showed that 9 out 178 patients with diabetes had 
potential Paraquat poisoning based on their abnormal concentration 
on Citrate, Glutinane and Alanine and 24 out of 178 had Salicylate 
(Aspirin) detected in their urine. For Asprin abnormality, we conclude 
that people with diabetes are more encouraged to take Aspirin as it may 
reduce risk of heart attack due to coronary obstruction, which is a risk 
many diabetics may develop [19]. Flexible PCA is coded in Java and R 
and is available upon request from the corresponding author.

Abundances of metabolites are indicative of a variety of conditions, 
and can provide important insights in a wide variety of biological and 
clinical investigations. At the same time, interpretation of the spectra 
gives rise to substantial methodological challenges. The spectra are 
subject to biological and technical variations, and to uncertainty 
in identification and quantification of peaks. Nuclear magnetic 
resonance spectroscopy is a method of choice for identifying and 
quantifying metabolites in complex biological mixtures, as it is fast, 
non-destructive and highly reproducible. However interpretation of 
the spectra is hampered by their complexity, presence of overlapping 
peaks, and biological variation in the abundance of metabolites. The 
difficulty is particularly apparent in modern investigations, which 
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Introduction
Many chronic diseases like Type II Diabetes (T2D) and its 

complications may be prevenTable by avoiding factors that trigger 
the disease process. Accurate prediction and identification using 
biomarkers will be useful for disease prevention and initiation 
of proactive therapies to those individuals who are most likely to 
develop the disease. Recent techno- logical advances in proton 1H 
Nuclear Magnetic Resonance (NMR) spectroscopy techniques for 
metabolomics profiling offer great opportunity for biomarker discovery 
[1-18]. Because of experimental issues in the technical equipment, the 
levels of some metabolites cannot be universally determined. As the 
number of measured metabolites often exceeds the number of samples, 
dimensionality reduction methods are required.

In this study, we present a possible analysis workflow for mining 
1H-NMR spectrum for a sample of subjects with T2D and controls 
(see Methods) using robust statistical approaches such as regularized 
principal component and regularized cluster analysis methods as an 
integrative approach to discover new metabolites and possibly discover 
new biomarkers (Figure 1).

QMDiab is a 2012 study from the Dermatology Department of 
Hamad Medical Corporation in Doha, Qatar. The incentive was the 
high prevalence of T2D mellitus in Qatar, where the country ranked 
#21 worldwide in 2013 (International Diabetes Federation, 2014). 
Metabolite analysis was per- formed on human blood and urine 
biofluid of 348 subjects with T2D and controls (here we use urine 
biofluid only) where at least 100 patients were Qatari (173 males and 
175 females). The subject characteristics are shown in Table 1.

In the first round of analysis the complete spectra were binned 
into different bin sizes and normalized using the total peak area 
normalization method [8]. The qualitative analysis of the major 
variances in the spectra was performed directly by using a newly 
developed flexible and robust PCA (we named fPCA) which preprocess 
noisy and correlated 1H-NMR data (Figure 2). The fPCA was able to 
cluster all the samples without diabetes but the samples with diabetes 
had a wide spread. Compounds that are identified by NMR spectrum 

Abstract
Diabetes is a leading health problem in the developed world. The recent surge of wealth in Qatar has made it one 

of the most vulnerable nations to diabetes and related diseases. Recent technological advances in 1H Nuclear Magnetic 
Resonance (NMR) spectroscopy techniques for metabolomics profiling offer a great opportunity for biomarkers discovery. 
Using this technology, we present in this study, an integrative approach to discover new metabolites and possibly 
new biomarkers. We performed an integrative analysis of 1H NMR spectras measured in urine, from 348 participants 
of the Qatar Metabolomics Study on Diabetes (QM- Diab). Our analyses revealed several metabolites that correlate 
with diabetes and identified specific metabolites affected by anti- diabetes medication, which constraints differentiation  
be- tween diabetic and control patients.
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Diabetes is usually a lifelong chronic disease characterized by an 
above-average concentration of sugar in the blood and urine. It is 
characterized as a disease of affluence and hence affects a considerable 
portion of the population of the developed world. Diabetes is caused 
by a reduction in the insulin production by the pancreas or a decreased 
response of body cells to insulin. The prevalence of diabetes in Qatar is 
higher in females than in males [1]. Risk factors also increase with age, 
obesity, hypertension, heart diseases and smoking habits [1]. Family 
history also effects a person’s predisposition to diabetes, which shows 
that there is a significant genetic component. In Qatar, there are a lot of 
marriages between close cousins and this is a cause for concern. Qatar 
Diabetes Association (QDA), which was set up by Qatar Foundation 
(www.qf.org.qa), is leading the fight against diabetes by educating the 
general population about the risk factors.

Approach
Technologies to measure high-throughput biomedical data in 

proteomics, chemometrics, and genomics have led to a proliferation 
of high-dimensional data that pose many statistical challenges. As 
metabolites, are biologically interconnected, the variables, in these data 
sets are not only far larger than the sample size but are often highly 
correlated and noisy. More generally, methods such as PLS, PCA 
and SPCA can be used as dimension reduction techniques that finds 
projections of the data that maximize the covariance between the data 
and the response [15]. During the last decade, several work have been 
proposed to encourage sparsity in these projections, or loadings vectors, 
to select relevant features in high-dimensional data [13,14]. There are 
several motivations for regularizing the PCA loadings vectors. Several 
authors have shown that the PCA projection vectors are asymptotically 
inconsistent in high-dimensional settings and encouraging sparsity 
in the loadings has been shown to yield consistent projections [11-
15]. However, the computational cost is expensive when requiring a 
large number of loading so it is desirable to find an approach, which 
regularize loading scores, reduce features and boost the computation 
of PCA. The PCA loading vectors can be used as a data compression 
technique when making future predictions; sparsity further compresses 
the data. As many variables in high-dimensional data are noisy and 
irrelevant, sparsity presents a method for automatic feature selection. 
This leads to results that are easier to interpret and visualize. While 
sparsity in PCA is important for high-dimensional data, there is also 
a need for more general and flexible regularized methods. Consider 
our NMR spectroscopy as a motivating example. This high-throughput 
data measures the spectrum of chemical resonances of all the latent 
metabolites, or small molecules, present in a biological sample. 
Typical experimental data consists of discretized, functional, and non-
negative spectra with variables measuring in the thousands for only a 
small number of samples. Additionally, variables in the spectra have 
complex dependencies arising from correlation at adjacent chemical 
shifts, metabolites resonating at more than one chemical shift, and 
overlapping resonances of latent metabolites. Because of these complex 
dependencies, there is a long history of using PCA to reduce the NMR 
spectrum for supervised data [16]. Classical PCA or Sparse PCA, 
however, are not optimal for this type of data as they do not account 
for the non-negativity or functional nature of the spectra and do not 
encourage sparsity or group sparsity.

In this paper, we seek a more flexible framework for regularizing the 
PCA loadings that are computationally efficient and fast for analyzing 
high-dimensional 1H NMR data that encourage sparsity, group sparsity, 
or smoothness, and also leads to a more computationally efficient and 
fast numerical algorithm.

Figure 1: A Qatari population is a palette of ethnicity and nationality. 
Courtesy of December 2015 issue of  bq magazine (bqdoha.com).

Population Characteristics T2D n=178 No-T2D n=170
Age (years) 54.0 (34.8-70.7) 38.5(23.3-62.5)

Gender (% female) 75 (44.1%) 98 (55.1%)
Ethnicity
Arab (%) 85 (50.0%) 115 (64.6%)

South Asian (%) 65 (38.2%) 34 (19.1%)
Filipino(%) 13 (7.6%) 22 (12.4%)

Other or mix (%) 7 (4.1%) 7 (3.9%)

Table 1: Subject characteristics. Arab: Bahrain, Egypt, Iraq, Jordan, Kuwait, 
Lebanon, Morocco, Oman, Palestine, Qatar, Saudi Arabia, So- malia, Sudan, 
Syria, Tunisia, United Arab Emirates and Yemen South Asian: India, Bangladesh, 
Nepal, Pakistan, Sri Lanka. Values represent median (90% range) or number of 
subjects (%).

require an accurate and fast analysis of spectra from hundreds and 
even thousands of biological samples. Statistical inference is the only 
approach that can yield objective and reproducible conclusions from 
such data. At present the statistical tools available for this task are of 
limited performance.
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Methods
QMDiab Study

This study was embedded in the Qatar Metabolomics Study on 
Diabetes (QMDiab), a cross-sectional case-control study with 348 
subjects (Tables 1-3). The work was a joint collaboration between 
Hamad Medical Corporation and Weill Cornell Medical College 
Qatar. Patients were asked to enroll between February and June 2012. 
The study has been approved by the Institutional Review Board (IRB) 
of Hamad Medical Corporation and Weill Cornell Medical College 
Qatarand is accordance with the Helsinki Declaration of 1975. Written 
informed consent was obtained from all participants. The study 
measured metabolites in 348 individuals within the age of 17 to 81. The 
metabolites were measured in the three body fluids non-fasting blood 
plasma, urine, and saliva. In the time from February to June 2012, 1107 
samples were taken from the participants, comprising 1563 metabolites 
including amino acids, peptides, carbohydrates and lipids, as well as 
age, gender, ethnicity, weight, height, Body Mass Index (BMI) and 
personal history of T2D [17].

The samples were analyzed by the three companies Metabolon 
Inc., Chenomx Inc., and Biocrates Life Sciences AG. The respective 
companies utilized liquid/gas chromatography with mass spectrometry 
injections, targeted profiling using NMR, and Multiple Reaction 
Monitoring (MRM). The study found that all variables of ethnicity, 
gender and smoking had a strong effect on a diabetes risk factor, 
advanced glycation end products. Women, Arabs, Filipinos, and 
smokers were more strongly affected than men, south Asians, and non 
or irregular smokers [17].

Statistical Analysis

NMR binned data: When dealing with high resolution NMR 
spectra it is in general impracticable to work with the entire data points 
of the spectra which are usually in the order of 32Kb and bigger. The 
most common strategy used to reduce the number of variables consists 
in dividing each spectrum in a defined number of regions, the so 
called bins. Several binning strategies are available today, from regular 
binning, where bins have fixed width, to more sophisticated strategies 
such as gaussian or dynamic adaptive binning [8]. Here we used regular 

Characteristics Arab n = 200 South Asian n = 99 Filipino n = 35

Type II Diab n = 85 Non Type II Diab n = 115 Type II Diab  n = 65 Non Type II Diab n = 34 Type II Diab n = 13 Non Type II Diab n = 22

Age (years) 53.9 (34.271.2) 39.1 (22.664.4) 52.6 (35.269.1) 39.0(25.057.6) 49.3(37.863.0) 37.2(23.257.8)
Gender (% female) 51 (60.0%) 70 (60.9%) 11 (16.9%) 13 (38.2%) 11 (84.6%) 13 (59.1%)

Smoking (%) 8 (9.4%) 10 (8.7%) 6 (9.2%) 2 (5.9%) 1 (7.7%) 2 (9.1%)

Table 2: Subject characteristics stratified by ethnicity.

Characteristics Female n = 173
Type II Diabetes n = 75

Female n = 173
Non Type II Diabetes n = 98

Male n = 175
Type II Diabetes n = 98

Male n = 175
Non Type II Diabetes n =95

Age (years) 52.6 (33.770.6) 36.5 (19.561.2) 54.4 (34.971.1) 41.7 (25.964.3)
Ethnicity
Arab (%) 51 (68.0%) 70 (71.4%) 34 (35.8%) 45 (56.3%)

South Asian (%) 11 (14.7%) 13 (13.3%) 54 (56.8%) 21 (26.3%)
Filipino (%) 11 (14.7%) 13 (13.3%) 2 (2.1%) 9 (11.3%)

Other or mix (%) 2 (2.7%) 2 (2.0%) 5 (5.3%) 5 (6.3%)

Table 3: Subject characteristics stratified by gender.

Figure 2: An example of binned spectra.
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binning to preprocess the high resolution data ∼ 65536 data points 
in a single spectrum and remove any anomalies. This was motivated 
by the fact that when dealing with an array of NMR spectra, whilst 
regular binning of a number of bins over stacked spectra containing 
spectra will generate a matrix, it is not possible to generate a similar 
matrix using directly deconvolved peaks (peak list) since the number 
and position of peaks varies from spectrum to spectrum. In our case, 
we have used a binning approach which automates the binning of 
assembled NMR spectrum using imposed alignment of each spectra.
In fact, we had 354 files that contained NMR coordinates. Each file 
had approximately 65,000 data points. This means that our algorithm 
had to iterate through 374 x 65,000 = 22,620,000 (22 and 1/2 million) 
data points. Each bin gives rise to a new value which is representative 
for the bin. We used a bin interval of 0.007 ppm. Using JAVA, we 
iterated through all x values in this interval and calculated the mean 
and standard deviation. After this we considered values inside m ± 3σ 
and calculated their mean. The obtained matrix after processing the 
data was of size 348 x 2960.

Sparse PCA with elastic net: Consider the linear regression model 
with n observations and p predictors. Let Y = ( 1y

,...., )T be the 
response vector and X = [X1, ..., Xp], j = 1, ..., p the predictors, where Xj 
= (x1j, ...,xn j)

T . After a location transformation we can assume all the 
Xj and Y are centered. The lasso is a penalized least squares method, 
imposing a constraint on the ℓ1 norm of the regression coefficients. 
Thus, the lasso estimates βlasso are obtained by minimizing the lasso 
criterion

2

1 1
arg min

p p

lasso j j j
j

Y X
β

β β λ β∧

=

= − +∑ ∑                                       (1)

whereλ  is non-negative. The lasso continuously shrinks the coefficients 
toward zero, and achieves its prediction accuracy via the bias variance 
trade-off. Due to the nature of the 1  penalty, some coefficients will 
be shrunk to exact zero if λ  is large enough. The elastic net [12] 
generalizes the lasso to overcome these drawbacks, while enjoying its 
other favorable properties. For any non-negative λ1 and λ2, the elastic 
net estimates β̂ are given as follows:

{ }
2

2

2 1 2
1 1 1

(1 ) arg min
p p p

elastic j j j j
j j

Y X
β

β λ β λ β λ β∧

= =

= + − + +∑ ∑ ∑         (2)

The connection between robust regression method and PCA have 
been discussed by [11] and the problem becomes equivalent to the 
following optimization problem

2 2
1 1

ˆ arg min iZ X
β

β = − β + λ β + λ β  			               (3)

where 1
β = 1

p

j
β∑ is the ℓ1-norm of β, Z  =U Di i ii  the ith principal 

component. Approximated principal component are given by îXV

where
ˆ

îV β
β

= and large enough λ 1 gives a sparse β̂ , hence a sparse îV .

Algorithm1 summarizes the steps of SPCA. From an algorithmic 
point of view, to find the solutions in (3), each of the corresponding 
optimization problems can be seen as a Lasso problem by introducing 
new observations and then use Least Angle Regression algorithm 
(LARS) or coordinate-descent (Gauss-Seidel) algorithm. It is interesting 
to note that (i) for p n the augmented data set has p + n observations 
and p variables, which can slow the computation considerably; (ii) if 
the original design matrix is normalized, there is no guarantees the 
augmented design matrix will behave similarly, which can cause a loss of 
a part of the interpretation of the data; and (iii) the coordinate-descent 
algorithm proceeds by one at a time philosophy, e.g. it minimizes the 

loss function of βj while maintaining components βk, k ≠ j fixed at their 
actual values, in this case we cannot develop Gauss-Seidel for a grouped 
variable selection problem. To overcome these limitations, we derive a 
unified alternating direction method of multipliers based algorithm to 
handle sparse principal component selection which aims at selecting 
important components and penalizing the others through β [20]. We 
propose a doubly regularized model with a general penalty term of the 
form

12

p
t

j j
j

Qµ β β λ ω β
=

+ ∑

so the flexible elastic equation to minimize, given a fixed A=[α1,…, αk], 
from Algorithm 1 becomes:

1
( ) ( )

2

p
T T t

j j j j
j

X X Qµα β α β β β λ ω β− −
=

+ + ∑  	               (4)

where λ , µ ≥ 0 are two tuning parameters, ω  =( 2ω̂ , ..., 2ω̂ p)
t and Q = 

(qi j)1=i, j=p are weights associated with the 1 and 2 norms respectively, 
which are fixed in advance. 

The advantages of our algorithm are: (1) Provide a general 
frame to deal with the limitations of unweighed versions of lasso-
type estimates. A weighted version possesses the oracle properties of 
selecting the subset of interesting variables with a proper choice of the 
weights and increasing the number of hits and decreasing the number 
of false positives. (2) Combine the strengths of Lasso and a quadratic 
penalty designed to capture additional structure on the features in high 
dimensional setting which is frequent in high-throughput generated 
from 1H-NMR spectroscopy. (3) Develop an easy and fast algorithm 
using the Alternating Direction Method of Multipliers (ADMM) 
approach to find optimal estimator without augmenting or normalizing 
data (see next section).

Alternating Direction Method of Multipliers (ADMM): Recently, 
the alternating direction method of multipliers has been revisited 
and successfully applied to solving large scale problems arising from 
different applications. In this section we give an overview of ADMM. 
Consider the following optimization problem:

minimize f (β) + g(ξ) 

subject to β - ξ = 0,                                                                               (5)

where f and g are two convex functions and β, ξ∈RP. In this 
optimization problem, we have two sets of variables, with separable 
objective. The augmented Lagrangian for this problem is:

( ) ( ) 2

2
L ( , , ) ( ) ( / 2)tf gτ β ξ δ β ξ δ β ξ τ β ξ= + + − + − ,

where δ  is the dual variable for the constraint β-ξ=0 and τ>0 is 
a penalty parameter. The augmented Lagrangian methods were 
developed in part to bring robustness to the dual ascent method, and in 
particular, to yield convergence without strong assumptions like strict 
convexity or finiteness of f and g. 

At iteration k, the ADMM algorithm consists of the three steps:

1 : arg min ( , , )k k k
tL

β
β β ξ δ+ = , // β- minimization 	                 (6)

1 1: arg min ( , , )k k kLτξ
ξ β ξ δ+ += , // ξ – minimization 	                (7)

1 1 1: ( )k k k kδ δ τ β ξ+ + += + −  . //dual-update 		                (8)

1. In the first step of the ADMM algorithm, we fix ξ and δ  and 
minimize the augmented Lagrangian over β.
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2. In the second step, we fix β and δ  and minimize the augmented 
Lagrangian over ξ.

3. Finally, we update the dual variableδ .

If we consider the scaled dual variable η = (1/τ) { }1 2
2: arg min ( ) ( / 2k kf

β
β β τ β ξ+ = + − and the residual 

r = η - ξ, the ADMM algorithm can be expressed on its scaled dual form 
as (we will use the scaled form in the paper):

{ }1 2
2: arg min ( ) ( / 2k kf

β
β β τ β ξ+ = + − ; 		                 (9)

{ }1 1 2
2: arg min ( ) ( / 2k k kg

ξ
ξ ξ τ β ξ η+ += + − + ; 	               (10)

1 1 1:k k k kη η β ξ+ + += + − . 				               (11)

Stopping criteria: The primal and dual residuals at iteration k have 
the forms:

1( ), ( )k k k k k k
prie eβ ξ τ η η −= − = − − .

The ADMM algorithm terminates when the primal and dual residuals 

satisfy stopping criterion. A typical stopping criterion is given in [5] 

where the authors propose to terminate when k pri
prie ε≤ , k dual

duale ε≤ . 

The tolerances priε >0 and dualε >0 can be chosen using an absolute and 

relative criterion, such as { }2 2
max ,pri abs rel k kε ε ε β η= +  and

2

dual abs rel kpε ε ε τ η= + , where absε >0 and relε >0  are absolute 

and relative tolerances. A reasonable value for the relative stopping 

criterion is 12
pt

i jj
Qµ β β λ ω β

=
+ ∑ =10−3 or 10−4, depends on the scale of 

the typical variable (see [5] for details).

SPCA with ADMM: In this section we derive an efficient 
Alternating Direction Method of Multipliers algorithm for an elastic 
net approach of sparse PCA estimators with a more general penalty 
term of the form 12

pt
i jj

Qµ β β λ ω β
=

+ ∑ .

To check the importance of a variable, we estimate its coefficient β̂
solution of the generic problem:

1

ˆ ( , ) arg min( ) ( )
2

p
T T t

fPCA j j j j
j

X X Q
β

µβ λ µ α β α β β β λ ω β
=

= − − + + ∑   (12)

or equivalently

** 2**
2

1

1ˆ ( , ) arg min
2 2

p
t

fPCA j j
j

y X Q
β

µβ λ µ β β β λ ω β
=

= − + + ∑   (13)

where λ ,µ are two non negative tuning parameters, Q is a positive 
semi-definite matrix, y∗∗=Σ 1/2 α j , X∗∗=Σ 1/2 and Σ is the covariance 
matrix of X.

Equation (13) combines the strengths of regularized techniques 
of type Lasso and a quadratic penalty designed to capture additional 
structure on the features. When 

ˆ jω
 = 1, it is straightforward to show 

that all type of lasso models (Lasso, Enet, Slasso, L1Cp and Wfusion) 
are particular case of (13) using an augmented data reparameterization 
of the form

*
( )n p p t

XX
Lµ+ ×

 
=   
 

; Q=LLt ; *
( )

0

**
n py y+

 
=   
 

,

Therefore any efficient algorithm developed to find the whole 
solution path of the Lasso like least angle regression or coordinate 
descent algorithm can be applied. Unfortunately, the good properties 

of the two optimization techniques are overshadowed by the difficulties 
(i), (ii) and (iii). To deal with those problems, we propose to solve (13) 
using the ADMM algorithm. The idea is simple and straightforward. 
First, we propose to re-write (13) on the following ADMM form:

( )2

2
1

1 ˆ/ 2
2

p
t

j j
j

y X Qβ µ β β λ ω ξ
=

− + + ∑  

 subject to β - ξ = 0. (14)

If we write 2

2
( ) (1/ 2) ( / 2) ,tf y X Qβ β µ β β= − + g (ξ) = 1

ˆp
jj

λ ω ξ
=∑  

and ( ) 1ˆˆ 1/j j n
−

ω = β + then (13) becomes (5). In this case f and g are two 

convex functions. Apply- ing the ADMM algorithm to (14), we have to 
perform the following two steps at each iteration:

The β- minimization step.

This step updates βk by:

{ }21

2
: arg min ( ) ( / 2)k k kf+

β
β = β + τ β − ξ + η

 : }2

2
: ( / 2) k k+ τ β− ξ + η

 }2

2
: ( / 2) k k+ τ β− ξ + η

The ξ - minimization step.

This step updates ξk by:

{ }21 1

2
: arg min ( ) ( / 2k k kg+ +

ξ
ξ = ξ + τ β − ξ + η

: 21

2
1

ˆarg min
2

p
k k

j j
j

+

ξ
=

 τ
= λ ω ξ + β − ξ + η 

 
∑ ,

We show in the appendix that the solution consists of updating 

each component k
jξ  for j = 1,..., p by:

1 1 1
ˆ

: ( ) max ,0jk k k k k
j j j j jsign+ + + λω 

ξ = β + η β + η − τ 

: ( )
'

1
ˆ j

k k
j jS +

λω

τ

= β + η ,

where, Sκ (a) = (1 − κ /|a|) + a = 
a   if a  
0 if a   
a   if a  

− κ > κ
 ≤ κ
 + κ < − κ

is the soft thresholding function introduced and analyzed by [6]. The 
dual-update step is straightforward and consists of updating ηk by 
ηk+1:= ηk +βk+1 - ξk+1. It is worth to notice that since τ > 0, µ ≥ 0, XtX 
and Q are positive semi-definite matrices, (XtX+µQ+ τIp) is always 
invertible. If p > n, let M = µQ + τIp, to alleviate the cost of calculations, 
we can exploit the Woodbury formula for (XtX + M)−1. Algorithm 2 
shows the complete details of the flexible elastic-net with ADMM and 
and Algorithm 3 summarizes the flexible PCA.

Tuning parameters selection: In practice, it is important to select 
appropriate tuning parameters in order to obtain a good prediction 
precision and to control the amount of sparsity in the model. Choosing 
the tuning parameters can be done via minimizing an estimate of the 
out-of-sample prediction error. If a validation set is available, this can 
be estimated directly. Lacking a validation set one can use ten-fold 
cross validation. In our experiments l takes 100 logarithmically equally 
spaced values, µ ϵ {0,0.1,1,10,100} and γ ϵ {0.5,1,2.5,5,25}.

Results
fPCA, was applied to examine similarities and/or differences in the 
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1H-NMR spectra. A flexible principal component is a weighted linear 
combination of each of the original NMR variables so that the original 
data matrix is compressed into a smaller number of variables; the NMR 
data may be compressed into three to four fPCs in cases where the 
changes between groups or due to specific treatments are quite large. 
Figure 3 shows projection of processed urine samples with uniform 
0.007 ppm bin widths on the first and second fPC axes and Figure 4 
summarizes the loading scores. From this projection, fPCA analysis 
shows two perpendicular clustered groups with an overlap in diabetic 
and non-diabetic samples.

Interestingly, after further analysis, we identified that the overlap 
summarizes patients with controlled diabetes. Any supervised learning 
algorithm may lead to invalid results due to huge overlap of diabetic 
and non-diabetic samples and provide a one cluster summary. Here, 
flexible principal component 1 (fPC1) provide the maximum variance 
across diabetic and non-diabetic samples while principal component 2 
(fPC2) summarizes maximum variance across samples within diabetic 
or non-diabetic samples. Sixty metabolites were identified by 1H-NMR 
spectrum analysis of original data and loading spectrum of fPC1 and 
fPC2. Twenty four metabolites from major energy sources such as 
carbohydrates, lipids, and proteins, are identified by NMR spectrum 
analysis of original data and loading spectrum

of fPC1 can be used as potential biomarkers in human lipids 

for detection of diabetes. In total, 24 metabolites were detected at 
statistically different concentrations (Table 4).

Many compounds detected at higher levels for T2D were the 
end products of gluconeogenesis, including glucose and its polymer. 
Glycine-betaine (betaine) and glutamate, three of the major 
osmoprotectants used by S. Typhimurium, were found at higher 
concentrations. Other compounds more abundant

Figure 3: The X axis represents projection on the first flexible 
principal component and the Y axis represents the orthogonal 
component. Clustering of the blue stars to the left of the zero line 
indicates the urine metabolomic diagnostic test is highly sensitive 
in determining the presence of diabetes disease. (Blue: Non-
diabetic, Red: Diabetic)

Figure 4: Loading scores for first and second flexible components.

Metabolite Diabetes detected by fPC1 Metabolite Diabetes detected by fPC2
2-Hydroxyisobutyrate 2-Hydroxyisobutyrate
3-Hydroxyisovalerate -

Acetate Acetate
Acetone -
Betaine Betaine
Creatine -

Creatinine -
Dimethylamine Dimethylamine

Glucose Glucose
Glycine Glycine

Glycolate Glycolate
Hypoxanthine -
Isopropanol -

Lactate -
Maleate Maleate
Mannitol Mannitol
Methanol Methanol

Methylamine Methylamine
N,N-Dimethylglycine N,N-Dimethylglycine

Succinate -
Tartrate Tartrate
Taurine Taurine

β-Alanine -
π -Methylhistidine -

Table 4: Compounds detected in actual samples. Left column summarizes 
the ones detected by fPC1 and right column summarizes the ones detected by 
fPC2. Compound detected with fPC1 are potential biomarkers in human urine for 
diabetes. Compound detected with fPC2 indicating most variations in the normal 
and diabetic samples. Compounds in red have been reported abnormal in human 
urine in HMDB.

Blood metabolite actual 
sample fPC1 (mM) fPC2 (mM)

1,3-Dihydroxyacetone X 0.4195 0.1324
1,3-Dimethylurate X 1.3649 1.1966

1,6-Anhydro-b -D-glucose X
1,7-Dimethylxanthine X 0.1613 0.117
1-Methylnicotinamide X
2-Hydroxyisobutyrate X 0.0761 0.038

2-Oxobutyrate X 0.0716 0
2-Oxoglutarate X 0.0631 0

3-Aminoisobutyrate X
3-Hydroxyisovalerate X 0.0221 0
3-Hydroxymandelate X

3-Indoxylsulfate X
4-Hydroxyphenylacetate X

4-Pyridoxate X 0.2208 0
5,6-Dihydrouracil X 0.6077 0

Acetate X 0.0601 0.0072
Acetoin X 0.0215 0
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in gestational diabetes mellitus were 3-hydroxyisovalerate and 
2-hydroxyisobutyrate, probably due to altered biotin status and amino 
acid and/or gut metabolisms (the latter possibly related to higher 
BMI values). The major compounds detected at higher levels were the 
upper TCA cycle intermediates succinate, and the transhydrogenase 
Lactate/malate, which has dual metabolic functions, named: Delta(1)-
piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase, 
the first member of a novel subclass in a large family of NAD(P)-
dependent oxidoreductases [7]. The compounds identified by 
analysis of loading spectrum of fPC2 are the compounds that indicate 
most variations in the normal and diabetic blood samples (Table 6). 
The fPCA was able to cluster all the samples without diabetes. The 
samples with diabetes had a wide spread. An important observation 
in this case is the overlap of diabetic and non-diabetic samples. 
The overlap may be due a result of controlled diabetes of diabetic 
samples, which resulted into normal concentrations of metabolites 
compared to the metabolite concentrations for non-diabetic 
samples. The distribution of samples in fPC1, fPC2 space show that 
diabetic and non-diabetic samples are distributed along fPC1 and 
variation among the samples within the diabetic and non-diabetic 
groups is along fPC2. The spectra for fPC1 and fPC2 are shown in 
Figure 4. The spectra were processed to compute the concentration 
of metabolites.

Since the reference compound was present in all the metabolites, 
it was not included in fPC1 and fPC2. Therefore, the concentration 

Acetone X 0.0518 0

Alanine X

Adenine X 0.1256 0

Arabinitol X 3.6563 0.1111

Asparagine X

Benzoate X

Betaine X 10.4309 9.8544

Butanone X 0.0261 0

Caffeine X 0.1369 0.0722

Carnitine X

Choline X

Citrate X

Creatine X 1.0648 0

Creatine phosphate X 1.3224 0

Creatinine X 0.633 0

Cytosine X 0.0336 0

Dimethylamine X 0.2206 0.4833

Dimethyl sulfone X 0.2033 0.1388

Ethanol X

Ethanolamine X

Ethylene glycol X 2.2361

Formate X

Fumarate X 0.1383

Galactose X

Glucose X 156.7578 146.6056

Glucuronate X 6.3225 0

Glycine X 15.3768 15.733

Glycolate X 58.6403 52.3104

π -Methylhistidine X 0.1438 0

Table 5: Compounds detected in actual samples and loadings of fPC1 and fPC2.

Blood metabolite Actual sample fPC1 (mM) fPC2 (mM)
Guanidoacetate 19.2443 16.7526

Hippurate X
Histidine X

Histamine 0.1448 0
Hypoxanthine X 0.1254 0
Isopropanol X 0.017 0

Lactate X 0.2972 0
Lysine X

Maleate X 0.2852 0.1811
Mannitol X 18.0916 0.9322
Methanol X 1.1467 0.9029

Methylamine X 0.0838 0.0072
Methylguanidine 0.1761 0.1834

N,N-Dimethylglycine X 0.028 0.0368
N-Methylhydantoin 0.2124 0

N-Nitrosodimethylamine 0.2762 0
O-Acetylcarnitine X
O-Acetylcholine 0.1567 0

O-Phosphocholine X
Propionate 0.0089 0

Propylene glycol X
Pyroglutamate X

Salicylate X
Sarcosine 0.2763 0.3998

Serine 0.0698 0
Succinate X 0.0456 0
Sucrose X
Tartrate X 0.308 0.3615
Taurine X 41.1061 48.1989

Threonine X
Thymine 0.0636 0

Trigonelline X
Trimethylamine N-oxide X

Tyrosine X
Trans-Aconitate 0.1153 0.0789
Trimethylamine 0.0404 0.0392

Trimethylamine N-oxide 6.421 6.0661
Uracil X
Urea X

Uridine X
Valine X
Xylose X

Cs-Aconitate X
Trans-Aconitate X

β -Alanine X 0.4513 0
τ -Methylhistidine

Table 6: Compounds detected in actual samples and loadings of fPC1and fPC2.

of compounds in fPC1 and fPC2 could not be computed. But, the 
maximum concentration of a compound was calculated and is shown 
in Table 5. Moreover, 9 people out of 178 had potential Paraquat 
poisoning based on their abnormal concentration on citrate, glutinane 
and alanine and 24 out of 178 had Salicylate (Aspirin) detected in their 
blood and urine. For Asprin abnormality, we conclude that people with 
diabetes are more encouraged to take Aspirin as it may reduce risk of 
heart attack due to coronary obstruction, which is a risk many diabetics 
concurrunce (Figure 5).
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Conclusion
In this study, we presented an integrative analysis that revealed 

metabolites correlated with diabetes for a subset of Qatari population 
and we, furthermore, identified specific metabolites affected by 
medication, which constraints differentiation between diabetic and 
control patients. Despite significant advances, no single profiling 
method currently allows simultaneous analysis of all of the metabolites 
in the metabolome. Ultimate achievement of our study is to present an 
integrative statistical method for mining raw 1H NMR data. Challenges 
appear in handling big data where number of peaks is larger than 
the number of samples which limited the use of traditional statistical 
methods. Our next work is the continuation of the development of 
computational methods for the analysis of complex 1H NMR datasets 
and their integration with equally complex genomic, transcriptomic, 
and proteomic profiles as well as metabolome integrated network analysis.
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