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Introduction
Diabetes mellitus (DM) is a growing worldwide epidemic health 

problem. More than 350 million people worldwide are affected by DM, 
and one in three U.S. adults could have DM in 2050, if the current 
trends continue [1]. Diabetic nephropathy (DN) is one of the most 
important DM complications, and it continues to rank as the leading 
cause of end-stage renal disease (ESRD) in the U.S. Patients must 
undergo either dialysis or a kidney transplantation once DN progress 
to ESRD, which produces a huge economic burden for society [2,3]. 
There is a pressing need to develop novel therapeutics for preventing 
or delaying the progression of DN. Progressive glomerulosclerosis and 
renal interstitial fibrosis are two characteristic pathological changes 
in the kidney in DN. Glomerular sclerosis has been at the center of 
attention for nephrologists [4]; however, increasing evidence suggests 
the renal tubule is a primary site of injury during DN progression, and 
a significant positive correlation between development of interstitial 
fibrosis and subsequent loss of renal function is seen in DN patients 
[5,6]. Activation of the EGFR (Epidermal Growth Factor Receptor) 
has been implicated in diabetic kidney injury [7-10]; studies by us and 
others have found that chronic EGFR activation in diabetic kidney is 
detrimental, and inhibition of EGFR activation by pharmacologic or 
genetic strategies markedly preserved renal function and slowed DN 
progression [11-14].

The Hippo signaling pathway, a kinase cascade that is conserved 
from Drosophila to mammals, controls the balance of cell proliferation, 
cell differentiation and apoptosis to define organ size or initiate 
tumorigenesis via tuning the phosphorylation and activation of YAP 
(Yes-associated protein)/TAZ (transcriptional co-activator with 
PDZ-binding motif), which serve as transcriptional co-activators 
for numerous target genes in nucleus. Upon activation of the Hippo 
pathway in response to different extracellular cues, YAP/TAZ are 
phosphorylated at specific serine/threonine residues, which results 
in inactivation of YAP/TAZ by cytoplasmic sequestration and/or 
proteasome-mediated degradation, thereby inactivating expression of 

their numerous downstream target genes [15,16]. Increasing evidences 
suggest that YAP is an adaptor protein that modulates multiple signal 
transduction pathways in many cell types [17]. Activation of TGF-β 
signaling is well-known to be implicated in DN development and 
progression, and Smad3 is a crucial mediator of TGF-β signaling in 
fibroblasts [18,19]. Interestingly, recent studies revealed association 
of YAP with Smad2/3 to activate CTGF gene expression, and CTGF 
has been strongly associated with the development and progression 
of diabetic kidney injury via interaction with multiple ECM proteins 
[20-25]. In addition, some studies have implicated YAP and TAZ 
in mechanical signaling and tissue remodeling independent of the 
canonical mammalian Hippo pathway under various stress conditions 
[26-29]. Moreover, a recent study suggested that activation of YAP/TAZ 
in fibroblasts and subsequent activation of a renal profibrotic factor 
PAI-1 gene, SERPINE1, expression is involved in lung fibrogenesis [30]. 
Interestingly, YAP was also found to be inactivated in response to energy 
stress via direct activation of AMPK or through AMPK dependent 
LATS activation, whereas release of energy stress by administration 
of glucose activated YAP, which increased t downstream target gene 
expression [31,32].

Conclusion
Our recently published manuscript in Journal of American 

Society of Nephrology showed that YAP expression and activation 
in both type I and type II diabetic renal proximal tubule epithelial 
cells were upregulated through activation of an EGFR-PI3K-Akt-
CREB dependent pathway; in contrast, TAZ expression in proximal 
tubule epithelial cells was reduced. Moreover, we also found that two 
downstream target gene of YAP, CTGF and AREG, expression were 
markedly upregulated both in vitro and in vivo in high glucose milieu 
[33]. Under normal physiologic conditions, we found YAP expression 
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Abstract
Diabetic nephropathy (DN) is one of the most important complications of diabetes mellitus (DM), and it continues to 

rank as the leading cause of end-stage renal disease (ESRD) in the U.S. In our recently published manuscript, both in 
vitro and in vivo data showed that in response to high glucose, YAP expression and activation in renal proximal tubule 
epithelial cells were upregulated through activation of an EGFR- PI3K-Akt-CREB dependent pathway and subsequent 
activation of CTGF and AREG gene expression. The existence of crosstalk between EGFR and Hippo signaling pathway 
in diabetic kidney indicates the Hippo pathway may serve as an alternative novel therapeutic target of DN treatment.
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in proximal tubule epithelial cells is mainly located in cytoplasm, 
whereas it is highly expressed in podocyte nuclei similarly to what was 
found in previous studies [34]. However in the diabetic condition, we 
observed much higher expression of YAP in both cytosol and nucleus 
of renal proximal tubule epithelial cells compared with non-diabetic 
kidneys. Previous studies by us and others have indicated that EGFR 
activation in renal proximal tubule epithelial cells in response to 
various insults is closely related to the development of renal interstitial 
fibrosis through direct activation of myofibroblasts and/or interaction 
with TGF-β [35-41]. Therefore, EGFR dependent upregulation and 
activation of YAP and subsequent target gene expression in diabetic 
renal proximal tubule epithelial cells may be involved in initiation and 
progression of interstitial fibrosis in DN. More investigation on the 
potential mechanisms are still needed, but we postulate the following 
five possible mechanisms by which YAP activation in renal proximal 
tubule epithelial cells may mediate renal interstitial fibrosis: 1) CTGF 
is expressed in glomerular epithelial cells, proximal tubule epithelial 
cells and interstitial fibroblast cells [42]. Upregulation of CTGF per se 
and/or interaction with TGF-β can initiate or promote development 
of kidney interstitial fibrosis [20-25]; 2) Activated YAP directly 
activates TGF-β gene expression in the proximal tubule epithelial cells 
to promote interstitial fibrosis development similar to what has been 
reported in skin [43]; 3)The upregulated amphiregulin (and EGFR 
ligand) in diabetic renal proximal tubule epithelial cells activates EGFR 
to induce proximal tubule epithelial cells dedifferentiation through 
an autocrine mechanism, or activates EGFR expressed on fibroblasts 
to induce interstitial fibroblast proliferation and/or differentiation 
to myofibroblast through a paracrine mechanism; 4) Activation of 
CTGF and TGF-β signaling in diabetic renal proximal tubule epithelial 
cells induces excess ECM production thereby increasing kidney 
tissue stiffness, which further enhance YAP transcriptional activity 
via a positive feedback mechanism; 5) High glucose directly elevates 
YAP transcriptional activity by inhibition of AMPK and subsequent 
fibrogenesis in diabetic kidney. 

In conclusion, this study for the first time has documented Hippo 
pathway activation in diabetic kidney, which suggests a novel potential 
therapeutic target for DN treatment.
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