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Abstract
More than two billion people will reach the age of 65 by 2050. Therefore, infectious disease/cancer-related 

morbidity and mortality of aged subjects is expected to rise. Several factors including impaired functions of body 
barriers and changes in microbial colonization contribute in increasing elderly susceptibility to infections and cancer. 
However, thymic involution, a hallmark of immunosenescence, is undoubtedly the principal component of this 
prominent problem. Although the thymus remains functional at older age, its pronounced diminished T-cell export 
rate is insufficient to sustain a competent naïve peripheral T-cell pool. Consequently, gradual dwindling in T-cell 
receptor (TCR) repertoire diversity takes place. As a result, the capacity of the elderly immune system to confer 
protection against cancer, acute/chronic infections or to respond to vaccination erodes. Therefore, there is an urgent 
need for the development of novel strategies aimed at: i) providing superior control of infectious diseases and 
cancer, and ii) improving responsiveness to all forms of immunotherapies. 

Keywords: Thymopoiesis; Aging; Interleukin-21

Commentary
The thymus is unique due to its unparalleled capacity in supporting 

the de novo generation of naïve T cells [1-3]. Since the thymus lacks 
self-renewing progenitors, it heavily relies on sustained seeding 
with bone marrow-derived early thymic progenitors (ETPs) [4]. 
Unfortunately however, ETP numbers decline markedly with age 
due to increased apoptosis rates and reduced proliferative capacities 
[5]. This in turn leads to a diminished pool of double-negative (DN) 
and double-positive (DP) thymocytes triggering a negative impact 
on the delicate thymic stromal compartment (especially thymic 
epithelial cells-TECs) as the latter depends on cross-talk interactions 
with thymic progenitors for its sustained survival and function [6,7]. 
To compensate for such diminished thymic output, both homeostatic 
proliferation and increased T-cell life-span contributes to sustain the 
size of the peripheral T-cell compartment. As a result, aging peripheral 
T cells become highly exposed to extrinsic factors such as oxidative 
stress leading to a variety of intrinsic dysfunctionalities including: i) 
increased expression of several inhibitory/exhaustion receptors (PD1, 
LAG3, 2B4, and CD160); ii) alterations in cytoskeletal rearrangement 
and cell surface glycosylation, and iii) diminished formation of 
immune synapses with a 50% reduction in recruitment of signalling/
adaptor molecules (Lck, ZAP-70, Fyn, LAT, Grb2 and Vav) [8-16]. 
Further investigations led to additional insights on a direct relationship 
between age-dependent decline of miR-181a levels in human peripheral 
naïve CD4 T cells and dampened TCR signaling, which ends-up adding 
an additional counterproductive layer of interference with normal 
responsiveness to exogenous antigens [11]. As these defects cannot be 
corrected at the single cell level, simulating thymopoiesis remains the 
only strategy capable of re-establishing a pool of “young” and diversified 
T cells free of intrinsic deficiencies and capable of competent immune 
responsiveness. 

A variety of rejuvenation therapies including the use of growth 
factors, cytokines, hormonal therapies and castration have been 
tested [17]. The most promising of these interventions appear to be 
keratinocyte growth factor (KGF), interleukin (IL)-7, and ghrelin 
(GRL) [17]. Although preclinical models taught us that KGF can 
promote thymopoiesis through enhanced survival of the thymic stromal 
compartment [18,19], clinical studies did not clearly confirm these 
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findings [20,21]. Likewise, IL-7-based treatments showed increased 
thymic output in rodents and aged rhesus macaques, but marginal 
effects were observed on human thymopoiesis with preferential 
expansion of recent thymic emigrants and memory T cells [22-24]. 
Finally, the supporting role of the peptide hormone GRL in blocking 
thymic involution is another evolving treatment strategy for boosting 
T-cell output in older animals [25-29]. Unfortunately however,
the effect of GRL may be limited by the gradual loss of thymic GRL
receptor expression with aging [25-29]. As evidence for these therapies 
in stimulating thymopoiesis in higher species is yet to be clarified, the
search for new compounds displaying non-redundant thymopoietic-
stimulating/supporting abilities in aged subjects is needed.

Thymopoiesis relies on cytokines interplay with T-cell progenitors. 
In fact, prior to entering the peripheral T-cell pool, DP thymocytes 
must undergo restricted selection processes in the thymus via their 
rearranged TCR in response to self-peptides [30]. As a consequence, 
they become responsive to IL-7 [31]. In a quest to gain further 
insights into the possible role of additional cytokine(s) in supporting 
thymopoiesis, an in vitro model was developed to precisely manipulate 
the nature of the selecting peptide and the cytokine added to the milieu 
[32]. Besides the discovery of a role for IL-4 and IL-13 in positive 
selection and differentiation of thymocytes, the use of this high-
throughput system unveiled a novel and non-redundant function for 
IL-21 in supporting the expansion of thymic progenitors [32]. IL-21 
is the most recently identified member of the common γ-chain family 
of cytokines [33]. Produced mainly by activated CD4 T cells, IL-21 



Citation: Al-Chami E, Khodayarian F, Rafei M (2016) Interleukin-21: A New Class of Thymopoietin for Immune Rejuvenation. Single Cell Biol  5: 149. doi: 
10.4172/2168-9431.1000149

Page 2 of 3

Volume 5 • Issue 3 • 1000149Single Cell Biol, an open access journal
ISSN: 2168-9431

can: i) support CD4 T-cell differentiation down the Th17 pathway, 
ii) co-stimulate activated NK and CD8 lymphocytes, iii) desensitize
responding cells to the inhibitory effects of regulatory T cells, and iv)
act as a switch for IgG production in B cells [33,34]. Although not
required for normal hematopoiesis, bone marrow progenitors expand
in response to IL-21 overexpression in vivo [35]. Likewise, IL-21 did not 
seem to be essential for thymopoiesis due to normal T-cell development 
in mice deficient for the IL-21 receptor (IL-21R) [32]. However, in
vitro peptide-mediated TCR-engagement on DP thymocytes triggered
potent cell surface expression of the IL-21R leading to their expansion
and enhanced generation of single-positive (SP) CD8 T cells if
combined with IL-7 [32]. Based on these observations and on the fact
that IL-21 can accelerate thymic recovery following pharmacologically-
induced acute atrophy [36], the effect of IL-21 was evaluated for
triggering de novo thymopoiesis in aged mice as a means to enhance
their responsiveness to cancer vaccination [37]. In contrast to control
aged mice, IL-21 administration was indeed capable of stimulating
thymopoiesis and led to a boost in recent thymic emigrants output [37]. 
Accordingly, a substantial increase in the proportion of naïve T cells
was observed along with noticeable improvements in TCR receptor
diversity. The rejuvenated T-cell pool of IL-21-treated aged mice also
exhibited lower expression levels of the TCR-inhibiting phosphatases
SHP-2 and DUSP5/6 owing to augmented miR-181a expression [37]
(Figure 1). The net outcome culminated in improved TCR signaling
(e.g. enhanced phosphorylation of Lck, ZAP-70, and ERK) and effector 
functions (IL-2 secretion, CD25 expression and proliferation), which
was further reflected on their enhanced anti-tumoral response to
melanoma challenge following vaccination [37].

In summary, effective T-cell activation by immunotherapies or 
following the encountering of non-self-antigens is dependent upon 
two factors: a broad TCR repertoire and a pool of naïve T cells free of 
intrinsic defects. Unfortunately, both of these requirements are limited 
in aged subjects, which definitely impede the capacity of the aged 
immune system in generating both effective protection and a large/

diverse antigen-specific T-cell memory repertoire. As reversing these 
deficiencies could only be achieved by stimulating thymic functions, 
IL-21 could be exploited as a novel immune intervention to halt and 
hence reverse thymic atrophy and all related immune defects associated 
with an aging immune system.
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Figure 1: Schematic representation of the pharmacological effect of IL-21 in 
aged mice. In aging subjects, thymic function is limited leading to a restricted 
pool of naïve T cells. Upon IL-21 administration, enhanced proliferation of 
thymic progenitors is obtained via the induction of IL-21-related genes, which 
improves peripheral TCR diversity. In addition, newly developed naïve T cells 
express high amounts of miR-181a, which inhibits phosphatases targeting TCR 
signaling. 
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