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Abstract

In this paper, we consider the system of algebraic equations arising from the discretization of elliptic partial differential
equation with respect to x and y axes. To compute the solution of the resulting equations we use the new method to solve
various elliptic equations. We study the numerical accuracy of the method. The numerical results have shown that the
method provided exact result depending on the particular equation on which the scheme is applied.
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Introduction

A finite difference scheme with continuous coefficients for the
approximate solution of elliptic partial differential equation of the form

‘Zx[f () + % — f(x)

And U(x,y)=G(x,y) for (x,y)€S where R={(x,y):a<x<b, c<y<d and §
enotes the boundary of R is proposed. For this discussion we assume
that both f and g are continuous on their domains so that a unique
solution to equation (1.0) is ensured. The method to be used is the
adaptation of the canonical polynomials Q (x,y) [1-17]. Many problems
in engineering and sciences cannot be formulated in terms of partial
differential equations. The vast majority of equations encountered in
practice cannot, however, be solved analytically, and recourse must
necessarily be made to numerical methods.

Our Present Method

The basic method seeks an approximation of the form:

VU(x,y) = for (x,y)e R (1.0)

P2

U =Y 4,05, xe[t %]  r=0l.p-2  (20)
r=0

Such  that 0=xx<...<x...<x,=X The basis function,

Q.(xy)=x"y’,r=0,1,..., p-2 are assumed known, a_ are constants to be
determined and p < Il+s, where s is the number of collocation points.
The equality holds if the number of interpolation points used is equal
to I There will be flexibility in the choice of the basis function Q (x,y) as
may be desired for specific application. For this work, we consider the
Taylor’s polynomial Q (x,y)=x'y". The interpolation values U _ ..., U _ ..
are assumed to have been determined from previous steps, while the
method seeks to obtain U [8-27].

m+l-Pn
We apply the above interpolation conditions on eqn. (2.0) to obtain:
ayQo (xm+g’yn ) tot ap—ZQp—Z (xm+g)yn ) = U(xm+gayn) g=-11)/-2 (2 1)

We can write eqn. (2.1) as a simple matrix equation as,

O (%15 Vn) Op-2(Xn-1,¥n) U(x,, ¥y)
Q%> V) o Qp 23 1) U(Xp vn)

(2.2)
QO(merIfZ*yn) Qp*Z(mer[—Zayn) Ui >Vn)

Using three interpolation points and one collocation point, eqn.
(2.1) becomes,

ayQy (xm+g>yn)+ 1) (xm+gayn)+ 210 (xm+g’yn) =Upsgm (2.3)

Putting the values of g in eqn. (2.3) and writing it as a matrix we
obtain,

_QO(xmfl’yn) Ql (xmfl’yn) Q2(xmfl’yn) agy Umfl,n
QO(xm’yn) QI (xm’yn) Q2 (xm’yn) a | = Um.n (24)
L Q0 (Xms1:7n) Q1 (Xpatsn) Qo5 ¥) L3 Unsin

From eqn. (2.4) we obtain

[ 2 2
1 Xm—1Yn X m-1Y n ap Um—l,n

2 .2
1 Xm¥n X mY n a |= Um}t (25)

U

m+l,n

|1 eV P’ L2
We solve eqn. (2.5) to obtain the value of a, as:
Uppsin +Uppgn = 2U
21?52,
Using 3 interpolation points and 1 collocation point, implies that r.
Putting the values of 7 in eqn. (2.0) we obtain

U(x,y)=agQy + a0 + a0y (2:6)

By substitution of Q, Q, and Q, in eqn. (2.6) we obtain

m+l,n m,n

s

ay =

U(x,y)=ay+axy+ azxzy2 (2.7)

Substituting the value of @, in eqn. (2.7) we have

2Um,n] (9)

U +U,,_
U(x,y)=ag+axy+ xzy2 mtln '; 12,n
2h7y”,
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Taken the first and second derivatives of eqn. (2.8) with respect to We collocate eqn. (2.19) at x=x, to arrive at
x we have
Upirn +U 2w U"(ry) = et Um’znfl s (220)
U"(x,t) _ y2 m+1,n 2m—zl,n m,n ] (2.9) h
h*y®, Substituting eqns. (2.10) and (2.20) in eqn. (1.0) we obtain a scheme

We collocate eqn. (2.9) at y=y , we obtain:

Um+l,n +U 2Um,n (2.10)

m-ln ~
h2

We interchange the roles of x and y in eqn. (2.0) and applying the
same interpolation conditions we obtain,

U'(x,y)=

aOQO (xn17yn+g)+"'+ ap—ZQp—Z (xm’ynJrg) = U(xmrynJrg) (2.11)

We can write eqn. (2.11) as a simple matrix equation as,

Oo(XmsVuat) Opoa (X yt) a, U(%X,s Vp_1)

-l (2.12)

Q()(Xm,y,,”,z) Qp*Z(xm’ynJrl—Z) ap-2 U Yns1-2)

Using 3 interpolation and 1 collocation points, eqn. (2.11) becomes,

aOQO(xn1’yn+g)+ aQ (x/n’ylz+g)+02Q2 (xm’ywrg) =Um’n+g g=-10,1 (213)

Putting the values of g in eqn. (2.13) and writing it as a matrix we
obtain,

7Q0(xm’yn—1) Ql (xm’yn—l) QZ(xmayn—l) ap Um,n—l
QO(xm’yn) Ql(xm’yn) Qz(xm’yn) a | = Um.n (214)
7Q0(xm’yn+l) Ql (xm’yrﬁrl) QZ(xm’ynH) 4 Um,n+1
From eqn. (2.14) we obtain
[ 2 .2
1 XmYn-1 X mY n-1 ag Um,n—]
2 02
1 Xm¥n X mY n a | = Um.n (215)
2 .2
1 XmYn+1 X mY n+l @ Um,n+l

We solve eqn. (2.15) to obtain the value of a, as,
Um,)1+1 + Um,n—l - 2Um,n
52 2n

ay =

b}

Using 3 interpolation points and 1 collocation point implies that .
Putting the values of 7 in eqn. (2.0) we obtain,

U(x,y)=agQy + a0 + a0, (2.16)
By substitution of Q;, Q, and Q, in eqn. (2.16) we obtain
U(x,y) = ag + ayxy + ayx*y? (2.17)

Substituting the value of a, in eqn. (2.17) we have

Um,n+1 + Um,n—l - 2Um,n (2.18)
2h2 2n

U(x,y)=ay +a1xy+x2y2(

Taken the first and second derivatives of eqn. (2.18) with respect
to y we have

U”(x y) _ xz Um,n+1 + Um,n—l - 2Um,n
' hzxzn

(2.19)

that solves elliptic equation. To illustrate the method we use it to solve
two test problems (3.1) and (3.2) respectively.

Specific Problem
Example 3.1

Use the scheme to approximate the solution of a problem of
determining the steady-state heat in a thin metal plate in the shape
of a square with dimensions 0.5 meters by 0.5 meters, which is held
at 0° Celsius on two adjacent boundaries while the heat on the other
boundaries increase linearly from 0° Celsius at one corner to 100°
Celsius where these sides meet. If we replace the sides with zero
boundary conditions along the x- and y —axes, the problem is expressed
mathematically as:

U U

P R

ox oy
for (x,y) in theR={(x,y):0<x<.5, 0<y<.5 with the boundary conditions
U(0,y)=U(x,0)=0 and U(x,.5)=200x, U(.5,y)=200y

The exact solution of the problem is U(x,.y)=400xy

Using mesh size of 0.125 on each axis, the method gives us the
result as shown in Table 1.

Example 3.2

Use the scheme to approximate the solution to the Poisson’s
equation

2 2
a—lzj+a—U:xey 0<x<2, O<y<l
ox X
With the boundary conditions
U(0,y)=0, U(2,y)=2¢", 0<y<l
U(x,0)=x, U(x,l)zex, 0<x<2

The exact solution of the problem is U(x,y)=xe’. Using a mesh size
0f 0.3333 on the axis x and 0.2000 on the y- axis we obtain the following
result (Table 2).

Conclusion

A continuous interpolation collocation method is proposed for
solving elliptic partial differential equations. To check the numerical
method, itis applied to solve two (2) different test problems with known

i J X; YJ Our Method | Exact result
1 3 0.125 0.375 18.75 18.75
2 3 0.250 0.375 37.50 37.50
3 3 0.375 0.375 56.25 56.25
1 2 0.125 0.250 12.50 12.50
2 2 0.250 0.250 25.00 25.00
3 2 0.375 0.250 37.50 37.50
1 1 0.125 0.125 6.25 6.25
2 1 0.250 0.125 12.50 12.50
3 1 0.375 0.125 18.75 18.75

Table 1: Result of action of eqn. (2.21) on problem 3.1.
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X; Y Our method  Exact result| Error
0.3333 0.2000 0.40726 0.40713 1.30 x 10+
0.3333 0.4000 0.49748 0.49727 2.08 x 10+
0.3333 0.6000 0.60760 0.60737 |2.23 x10*
0.3333 0.8000 0.74201 0.74185 1.60 x 10+
0.6667 0.2000 0.81452 0.81472 2.55 x 10*

0.6667 0.4000 0.99496 0.99455 4.08 x 10

0.6667 0.6000 1.21520 1.21470 4.37 x 10*
0.6667 0.8000 1.48400 1.48370 3.15x 10*
1.0000 0.2000 1.22180 1.22140 3.64 x 10*
1.0000 0.4000 1.49240 149180 5.80 x 10*

1.0000 0.6000 1.82270 1.82210 6.24 x 10*
1.0000 0.8000 2.22600 2.22550 |4.51 x 10+
1.3333 0.2000 1.62900 1.62850 4.27 x 10*
1.3333 0.4000 1.98980 1.98910 6.79 x 10
1.3333 0.6000 2.43020 242950 |7.35x10*
1.3333 0.8000 2.96790 2.96740 |5.40x10*
1.6670 0.2000 2.03600 2.03570 |3.71 x10*
1.6670 0.4000 2.48700 248640 5.84 x10*
1.6670 0.6000 3.03750 3.03690 6.41x10*
1.6670 0.8000 3.70970 3.70920 4.89 x 10*

a a0 o bDDBRROOWOWOINNDNNN-_2 2 -
AN =2 DRON_22ADMON-_2DMON-S2DWIN A

Table 2: Result of action of eqn. (2.21) on problem 3.2.

exact solutions. The scheme produced real values in test problem 1,
while there is small deviation from the exact solutions in the result of
the second test problem. The numerical results confirm the validity
of the new numerical scheme and suggest that it is a viable numerical
method which involves the reduction of PDE to a system of ODE:s.
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