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Allogeneic (allo) hematopoietic stem transplantation (HSCT) is a 
potentially curative procedure for selected patients with hematological 
disease. Despite a reduction in transplant risk in recent years, morbidity 
and mortality remains substantial, making the decision of whom, how 
and when to transplant, of great importance [1].

Numerous parameters affect transplant related risk. When 
indicated, clinical judgment often plays a key role in patient selection 
[2]. Risk scores for mortality prediction, such as the European Group 
for Blood and Marrow Transplantation (EBMT) risk score, the 
Hematopoietic Cell Transplant-Co-morbidity Index (HCT-CI) and 
others, may aid decision [3-5]. These risk score were developed using a 
standard statistical approach and have been validated. However, their 
predictive accuracy is still sub-optimal [6-9]. 

The development of large and complex registries, incorporating 
biological and clinical data, and the need for improved prediction 
models, generate the drive to apply machine learning (ML) algorithms 
for clinical predictions [10,11]. ML is a field in artificial intelligence 
stemming from computer sciences. The underlying paradigm does not 
start with a pre-defined model, rather it lets the data create the model 
by detecting underlying patterns [11]. Thus, this approach avoids pre-
assumptions about model types and variable interactions, and may 
complement standard statistical methods [12,13]. ML algorithms 
are often used as tools in the data mining approach for knowledge 
discovery in databases [11].

Motivated by the need for improved risk prediction of allogeneic 
HSCT, the potential benefits of ML algorithms and their success in 
other clinical scenarios, we performed a predictive data mining study 
on a large cohort of transplanted acute leukemia (i.e., Acute Myeloid 
Leukemia and Acute Lymphoblastic Leukemia) patients, developing 
a readably accessible prediction model for mortality following 
transplantation [14-18]. Methodological and clinical aspects of the 
model are discussed below, whereas a full description of the model is 
available under the following reference [19]. 

The study cohort consisted of 28,236 adult allogeneic HSCT 
recipients from the Acute Leukemia Working Party registry of the 
European Group for Blood and Marrow Transplantation. The primary 
objective was prediction of overall mortality (OM) at 100 days after 
HSCT. Secondary objectives were estimation of non-relapse mortality 
(NRM), leukemia-free survival (LFS), and overall survival (OS) at 2 
years. Donor, recipient, and procedural characteristics were analyzed. 
The alternating decision tree (ADT) ML algorithm was applied 
for model development on 70% of the data set and validated on the 
remaining data. 

Alternating decision trees are a generalization of decision trees 
that result from applying a variant of boosting to combine weak 
classifiers. Questions are asked iteratively, until a user pre-defined 
number of iterations are reached. The ADT Tree structure consists of 

alternating levels of prediction and decision nodes. Each prediction 
node is associated with a weight, representing its contribution to the 
final prediction score, while each decision node contains a binary single 
question regarding a certain attribute. In contrast to standard decision 
trees, where classification is achieved by following a unique path 
from the root to a leaf for a given unknown instance, prediction with 
ADT involves pursuing multiple paths, corresponding to the instance 
features. The cumulative score gathered by an instance (i.e., a patient 
being evaluated before transplant) is the sum of the prediction values 
along all paths that the patient traverses in the decision tree. A positive 
score implies membership of one class and a negative sum membership 
of the other. The absolute score value is directly correlated with the 
classification confidence [20,21]. We have transformed the score into a 
probability through a logistic transformation. The ADT is appealing for 
prediction in clinical scenarios, as it is an accurate boosting algorithm 
in which interpretability is preserved, as opposed to alternative 
ensemble techniques.

In the study cohort, the majority of patients had Acute Myeloid 
Leukemia (70%), were in first complete remission (60%) and received 
myeloablative conditioning (71.5%). Grafts from HLA matched sibling 
donors were used in 53.9% of patients. OM prevalence at day 100 was 
13.9% (n=3,936), underscoring its significance as a valid predictive 
endpoint. For generation of a prediction model of day 100 OM the 
ADT algorithm was applied and optimized on the training set using 10 
fold cross-validations. After calibrating the score on the validation set, 
day 100 OM probabilities were calculated and ranged from 3% to 68%. 
Model‘s discrimination on the validation set for the primary objective 
(day 100 OM) performed better than the EBMT score (AUC=0.701 
versus 0.646, p-value<0.00001). Per secondary objectives, cumulative 
incidence of 2 years NRM was 38.2% (34.7-41.7, 95%-CI) for the 
patients included in the highest score interval, with corresponding 
Kaplan Meier estimate of OS and LFS of 19.9% (17-22.9% ,95%-CI) 
and 17.5% (14.7-20.3%, 95%-CI) respectively. Probabilities of 2 years 
NRM, OS and LFS, for patients in the lowest score interval, were 9.8% 
(7.9-12, 95%-CI), 72% (68.8-75.1, 95%-CI) and 64.9% (61.6-68.2, 95%-
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CI) respectively. Discrimination of the ADT model for 2 years overall 
survival outperformed the EBMT score (AUC=0.657 versus 0.647, 
p-value=0.04). An online version of ADT models is available at http://
bioinfo.lnx.biu.ac.il/~bondi/web1.html. 

The ADT algorithm selected 10 out of 20 variables, while providing 
information on the variables’ dependence status, importance, and 
interactions. Key determinants of overall mortality were disease stage 
and performance status, in line with earlier studies [22,23]. Interactions 
discovered include the increased risk of aggressive conditioning 
regimens in the older patients (age>=37) and the benefit of experienced 
centers (>=20 transplants per year) in performing transplants from 
HLA matched unrelated donors, highlighting the need for center 
accreditation [24-26]. Importantly, age was not an independent risk 
factor for overall mortality, probably reflecting an improvement in 
transplantation care and patient selection in recent years [27]. 

Eligibility of patients with acute leukemia for allo-HSCT is based 
on a risk benefit-assessment of the relapse risk versus transplant risk 
[28]. By applying the ADT algorithm, we have developed a novel 
prediction model based on 10 variables, for day 100 OM. Scores 
assigned correlated with objectives, enabling an individual continuous 
probabilistic evaluation of the primary objective (i.e., OM at day 
100) and a discretized risk assessment of secondary objectives at 2 
years (OS, NRM, and LFS). Apart from the ADT score clinical utility, 
it marks the introduction of the data mining methodology into 
HSCT prognostic modeling. Nonetheless, the ADT is a classification 
algorithm designed for handling binary endpoints, but not censored or 
continuous endpoints. Therefore, we focused on a short term outcome, 
in a population where loss of follow-up was below 5%. Prediction of 
long term survival was achieved indirectly. Future models should be 
utilizing algorithms designed for survival modeling, accounting for 
censored data [18,29]. In addition, improving predictive accuracy will 
likely require incorporation of additional biologic, genetic and clinical 
features.
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