Interspinous Posterior Devices IPD: A Miracle Cure for the Lumbar Spinal Stenosis?

Alessandro Landi* and Roberto Delfini

Department of Neurology and Psychiatry, Division of Neurosurgery, University of Rome Sapienza, Rome, Italy

Keywords: IPD; IFD; Biomechanics; Lumbar stenosis; Interspinous devices; Lumbar instability

Interspinous Posterior Device (IPD) is a term used to identify a relatively recent group of implants used to treat lumbar spine stenosis with the presumed aim of a dynamic motion control systems [1-4]. All of IPD are small devices implanted between the vertebral spinous processes [5-11]. After implantation, the device must be opened or expanded to distract (open) the neural foramen and decompress the roots [5-7]. These implants aim to restrict painful motion while otherwise enabling normal motion [12,13]. These devices (also called interspinous spacers) distract the laminar space and/or spinous processes and restrict extension. This procedure theoretically, enlarges the neural foramen and decompresses the roots, and could decompress the cauda equina in patients with spinal stenosis and neurogenic claudication [11-15].

The IPD have evolved over the years, being classified into bound or non bound depending on the presence or absence of a dynamic movement control only of the extension or both flexion-extensions [16]. A further evolution has also led to the development of IFD or Interspinous Fusion Devices. These implants have as their goal the interspinous bone fusion and, in my opinion, they cannot be classified as dynamic motion control systems because their target is metameric fusion [17-22]. In the last 10 years there was a very large use of these implants. Despite this, no long-term clinical follow-up are available. In the literature is evident the high rate of reoperation, recurrence of symptoms and progression of degenerative changes. But his main question is: if these devices are effectively a miracle cure for the common problem of the lumbar spinal stenosis, why actually the use of IPD remains extremely controversial and should be investigated further?

Biomechanical Consideration

If it is true that such devices can be used in patients with mild to moderate stenosis [5-8], either central or foraminal, or in low-grade spondylolisthesis without lysis (with poor or at least questionable results), it is also true that such devices can be used in cases in which the lumbar degenerative cascade is in active phase. The lumbar degenerative cascade, when is in active phase, has as its first step the disc degeneration, more or less advanced in relation to the extension and the continuity in time of the injury itself. Normally, as defined by Kirkaldy-Willis [27], the biomechanics of the lumbar spine follows a law that is called "rule of spine loading", in which the axial load of the body is distribute for the 80% on the intervertebral disc and 20% on the posterior structures (joints, ligaments and muscles) [1-4,21-25]. Disc degeneration transfers the axial load posteriorly, reversing the load distribution. This leads to the overload of the facet joints resulting in joint laxity, reduced competence of the joint capsules and hypermobility. The hypermobility stimulates the inflammatory reaction of adjacent tissues, this activates the Fractalkine in the yellow ligament [27] causing the increasing of the inflammatory cells recruitment which degrade the extracellular matrix of the ligament making it lose elasticity and causing hypertrophy. It is well documented the role of fraktalkine in the development of numerous inflammatory diseases (rheumatoid arthritis, dermatitis, etc.) and in ligaments and joints involved in inflammatory processes caused by instability (eg, joint capsules, ligaments, and synovium). The inflammatory process involves these tissues so the fractalkine over expression is activated; thus causing the recruitment of mononuclear cells within the LF feeding the inflammation and causing vascular injury and angiogenesis [27]. Moreover such an increase in mononuclear activity cause a proliferation of fibroblasts, (for over expression of TGF beta mRNA resulting in increased collagen fibers) and inflammatory cells in LF. This inflammatory cells activity in the LF causes rupture of the extracellular matrix (for activation of metalloproteinase MMP2) due to the elastin degradation, resulting in loss of elasticity of the ligament and subsequent hypertrophy [27]. In addition, the disk protrusion and prolapse and the yellow ligament hypertrophy cause reduction of the spinal canal diameter causing stenosis. In this phase, in which the articular hypertrophy generates foramina stenosis, and the collapse of the disc generates ligamentous hypertrophy, the stenosis becomes symptomatic, but the main substrate remains hypermobility anyway.

The non bound IPD is implanted between the vertebral spinous processes [28]. After implantation, the device is opened to distract the neural foramen and decompress the nerves. This procedure brings to the transfer of the axial load anteriorly on an already degenerated disc. In addition, the distraction that has to be made to open the foraminal

*Corresponding author: Alessandro Landi, Department of Neurology and Psychiatry, Div. Neurosurgery, University of Rome Sapienza, Viale del Policlinico 155, 00185 Rome, Italy, Tel: +390649979105; E-mail: dott.alessandro.landigmail.com

Received October 26, 2013; Accepted January 20, 2014; Published February 02, 2014


Copyright: © 2014 Landi A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
IPD implants are extremely restricted, and reserved only to the bound
these devices are implanted. So in my opinion the real indications for
the posterior longitudinal ligament, causing the mobilization of the
spinous processes can result in their fractures or in lacerations of
of the treated level or of the adjacent ones. Moreover, the overload of
biomechanics causes an acceleration of the degenerative process, either
alteration of the sagittal balance, but which have the effect of increasing
progression of spinal degeneration. Such patients are in a condition of
spinal imbalance [7-9,12,14,16,18,29-34].

If such devices give an immediate improvement of the symptoms
thanking to the foramen opening, long-term alteration of the
biomechanics causes an acceleration of the degenerative process, either
of the treated level or of the adjacent ones. Moreover, the overload of
the spinous processes can result in their fractures or in lacerations of
the posterior longitudinal ligament, causing the mobilization of the
device [7-14,35,36].

The bound IPD that have the presumed function of neutralizing the
excessive movement in flexion-extension of the spine, when inserted
have the goal of distortion of the spinous processes to open the
foramina, which alters the lumbar biomechanics. Then even if these
are able to control the excessive degrees of movement in flexion and
extension, they have as consequence the non-physiological movement of
spinal unit, with the same consequences as described before for the
non bound IPD.

Specifically we can assure that the binding and unbinding properties
are specific for the IPD; in particular the bound IPD have a particular
concept in materials and design for which it must be adherent to the
above and below spinous process (such as WALLIS implant or DIAM
implant for example). This design complains laces, strings and much
more. The unbound IPD instead have no adherence to the spinal
processes (such as APERIUS, X-STOP, BACJAC ecc). This difference
in design reflects a difference in biomechanical behaviour: in fact the
unbound devices restrict (and no arrest) the motion only in flexion and
the bound devices restrict the motion both in flexion than in extension.

Moreover the metameric instability is not limited to flexion-
extension movements, but also and above all of lateral bending and
axial rotation. These movements are often associated with the flexion-
extension when complex movements are done. An interspinous device
cannot control the rotation and the lateral bending in any way. Those
movements are burdened by excessive load after the insertion of the
device, which then enhances and accelerates the degenerative process
[7-13,37,38].

Conclusions

The real problem is the biomechanic behaviour of the spine when
these devices are implanted. So in my opinion the real indications for
IPD implants are extremely restricted, and reserved only to the bound
IPD, because this type of devices is the only ones with a slight control
of the hypermovement. But when there are clear signs of metameric
instability, these devices should never be implanted.

References

(2009) Biomechanical characteristics of different regions of the human spine:
in vitro study on multilevel spinal segments. Spine (Phila Pa 1976) 34: 2858-
2864.
preserving implants evaluated by means of intervertebral disc bulging and
the Wallis interspinous implant to lower the incidence of recurrent lumbar disc
herniations in patients undergoing primary disc excision. J Spinal Disord Tech 20:
337-341.
7. Sun HL, Li CD, Liu XY, Lin JR, Yi XD, et al. (2011) [Mid-term follow-up and
analysis of the failure cases of interspinous implants for degenerative lumbar
diseases]. Beijing Da Xue Xue Bao 43: 690-695.
the interspinous distraction device (X-Stop) for the treatment of lumbar spinal
stenosis caused by degenerative spondylolisthesis. Eur Spine J 17: 188-192.
interlaminar/interspinous instrumentation: report of a case. Case Rep Surg 2012:
970642.
process stabilization: review of complications associated with the X-Stop device.
Neurosurg Focus 28: E8.
complications in patients treated with the X-Stop Interspinous Process
Decompression System: proposal for a novel anatomic scoring system for
Wallis implant reduce adjacent segment degeneration above lumbosacral
instrumented fusion? Eur Spine J 18: 830-840.
interspinous devices failures: a retrospective study, Eur Spine J 20 Suppl 1:
S27-35.
Determination of the in vivo posterior loading environment of the Coflex
Properties of an interspinous fixation device (ISD) in lumbar fusion constructs:
(2013) Biomechanical analysis of an interspinous fusion device as a stand-
alone and as supplemental fixation to posterior expandable interbody cages in the
Biomechanics of a lumbar interspinous anchor with anterior lumbar interbody
21. Adams MA, Hutton WC, Stott JR. The resistance to flexion of the


