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Introduction
Breast cancer, one of the most common cancers with 450,000 annual 

deaths world-wide, is clinically categorized on the basis of the existence 
of estrogen receptor (ER) [1,2], the amplification of HER2/ErbB2 
gene [3] and the absence of three receptors, such as ER, progesterone 
receptor (PR) and HER2/ERBB2 (Triple Negative) [4,5]. While for the 
first two groups of breast cancer receptor-specific therapy is applied, 
cytotoxic chemotherapy remains the mainstay of treatment for triple 
negative breast cancer (TNBC). Like other types of cancers, breast 
cancer is the result of gain-of-function mutations in proto-oncogenes 
stimulating cell growth and survival and/or loss-of function mutations 
in tumor suppressor genes allowing unrestrained growth of cancer 
cells [6]. Oncogenic proteins and tumor suppressors play the key roles 
in ensuring a critical balance for regulation of the key cell signaling 
pathways that ultimately control cell proliferation and survival [6]. 
The ErbB2, phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K), 
c-Myc, and cyclin D1 oncogenes are frequently overexpressed in breast 
cancer. Mutations in tumor suppressor genes, such as BRCA1, BRCA2, 

p53 and PTEN are responsible for both hereditary and acquired breast 
cancer [7,8].

Over expression of HER2/ErbB2, a member of the EGFR family of 
receptor tyrosine kinases (RTKs) takes place in  approximately 25–30% 
of human breast cancers predominantly as a result of amplification 
of the c-erbB-2 proto-oncogene [3,9,10] leading to increased level of 
metastases, resistance to endocrine therapy and poor survival [3,9-
13]. The primary mechanism by which ErbB2 induces mammary 
tumorigenesis in human breast cancer is through activation of PI3K/
Akt and MAP kinase pathways ultimately affecting transcription factors 
and the machinery that controls the cell cycle, such as cyclin D1[14] as 
well as Cdk4, a known cyclin D1 partner [15,16]. On the other hand, 
p53 gene is found mutated in ~23% of breast cancer samples with 
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Abstract
Breast cancer is one of the leading causes of deaths worldwide in women with hormone therapy, chemotherapy, 

targeted therapies, or their combinations being the current options for treating the disease at the different stages 
(stages I-III) with associated side-effects or increasing life-span at the advanced stage (stage IV). Small interfering 
RNA (siRNA) as an effective tool to selectively knockdown of a particular gene could be harnessed in combination 
with plasmid DNA (carrying a gene of interest) and conventional anti-cancer drugs for precisely treating breast 
cancer with minimal side effects. However the limitation of the naked siRNA and DNA in penetrating the plasma 
membrane and their sensitiveness to nuclease-mediated cleavage render the technology rather complex in 
therapeutic intervention. Recently, we have developed pH-sensitive carbonate apatite as a potential nano-carrier 
to efficiently deliver siRNA or DNA across the cell membrane and facilitate them to escape endosomal acidic 
compartment resulting in specific cleavage of a particular mRNA transcript or expression of a desirable protein, 
respectively. Moreover, we demonstrated nanoparticle-assisted delivery of the siRNAs targeting cyclin B1, PLC-
gamma-2/calmodulin1, NFκB1/NFκB2, ABCG2/ABCB1 and cROS1 mRNAs sensitizes cervical adenocarcinoma 
and breast cancer cells towards traditional anti-cancer drugs. Here, we report that co-delivery of the siRNA 
targeting HER2/ErbB2 gene transcript and p53 gene with the help of carbonate apatite nanoparticles synergistically 
induces inhibition of growth/proliferation of breast cancer cell lines as well as regression of the breast tumor induced 
in Balb/c mice. Additionally, combined delivery of nanoparticle-associated HER2/ErbB2 siRNA and p53 gene 
apparently slows down the growth of the established tumor in presence of doxorubicin or paclitaxel compared with 
the individual free drugs. Thus, the combination of HER2/ErbB2 knockdown and restoring of normal p53 function 
could be a highly promising approach necessitating further studies through pre-clinical trials with different models 
of breast cancer to establish the therapeutic role of this combination therapy prior to conducting clinical trials in 
breast cancer patients. 
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~70% of the mutations being the missense type [17]. In a normal cell, 
p53 protein is maintained at very low level by promoting proteasomal 
degradation of p53 through p53-interacting protein, MDM2, an E3 
ubiquitin ligase. Cellular stress-induced posttranslational modification 
of p53 and MDM2 stabilizes and activates p53 [18] enabling it to bind 
DNA in a sequence-specific manner and regulating the expression of 
hundreds of genes for cycle checkpoint activation, cellular senescence 
and apoptosis [19]. Centrosome amplification in p53 mutant cells [20] 
leads to chromosome instability, a hallmark of solid tumors whereas loss 
of p53 results in aberrant asymmetric cell divisions of mammary stem 
cells of ErbB2-associated mouse mammary tumors [21]. Mutations in 
p53 gene as well as overexpression of HER2/ErbB2 were also found to 
be linked to chemoresistance [22-25].

Considering the crucial roles of HER2/ErbB2 overexpression and 
p53 mutations in development, progression and chemoresistance of 
breast cancer which consists of a heterogeneous population of cells, 
strategies in silencing the overexpressed gene and providing the wild-
type p53 gene could be pivotal in effective treatment of the cancer. 
A number of existing non-viral vectors are available for intracellular 
delivery of siRNA and plasmid DNA to silence the target mRNA of a 
particular gene and to express a protein of interest, respectively with 
limitations in proper condensation, cellular uptake and endosomal 
escape, leading to a decrease in overall performance of the delivered 
siRNA or DNA [26,27]. Recently, we have developed pH-sensitive 
carbonate apatite as a potential nano-carrier to efficiently deliver 
siRNA or DNA across the cell membrane and facilitate them to 
escape endosomal acidic compartment finally leading to knockdown 
of a specific mRNA transcript or expression of a desirable protein, 
respectively [28,29]. Moreover, we demonstrated nanoparticle-
assisted delivery of the siRNAs targeting cyclin B1, PLC-gamma-2/
calmodulin 1,NFκB1/NFκB2, ABCG2/ABCB1 and cROS1 mRNAs 
sensitizes cervical adenocarcinoma and breast cancer cells towards 
traditional anti-cancer drugs [30-34]. Here, we report that combined 
delivery of the siRNA targeting HER2/ErbB2 gene transcript and p53 
gene with the help of carbonate apatite nanoparticles synergistically 
induces death or growth inhibition of breast cancer cell lines as well 
as the breast tumor induced in Balb/c mice. Moreover, intratumoral 
delivery of nanoparticle-associated HER2/ErbB2 siRNA and p53 gene 
apparently slow down the growth of the established tumor in presence 
of doxorubicin or paclitaxel compared with the individual free drug. 

Materials and Methods
Reagents 

Dulbecco’s modified Eagle medium (DMEM) was purchased from 
BioWhittaker (Walkersville, USA). DMEM powder, foetal bovine 
serum (FBS) and trypsin-ethylenediaminetetraacetate (trypsin-EDTA) 
were obtained from Gibco BRL (California, USA). Calcium chloride 
dehydrate (CaCl2.2H2O), sodium bicarbonate, dimethyl sulphoxide 
(DMSO) and thiazolyl blue tetrazolium bromide (MTT) were from 
Sigma-Aldrich (St Louis, MO, USA). The chemotherapy drugs, 
doxorubicin, paclitaxel and cis-diammineplatinum (II)   dichloride 
are from Sigma Aldrich (St.Louis, USA). Both doxorubicin  and cis-
diammineplatinum (II) dichloride were dissolved  indistilled  water and 
2mM stock solutions were prepared whereas paclitaxel was dissolved in 
DMSO and 10mM stock solution was prepared.

siRNA design and sequence

The validated anti-ERBB2 siRNA was purchased from 

QIAGEN (California, US) with the target sequence of 
5’-AACAAAGAAATCTTAGACGAA-3’. siRNA was supplied 
in lyophilised form and upon delivery, the siRNA (1 nmol) was 
reconstituted with RNase-free water to obtain a stock solution of 20 
μM. The siRNA solution was then allocated into multiple reaction 
tubes for storage as repeated thawing might affect the silencing 
efficiency of siRNAs. The siRNAs were stored at 20°C as recommended 
by QIAGEN.	

Isolation of p53

E coli DH5α cells harboring p53 plasmid were grown in LB media 
overnight at 37°C (Kanamycin was added at a concentration of 50 μg/ml 
culture). Next day small colonies were picked and grown individually 
in 50 ml of LB broth with kanamycin for 16 hour. The p53 plasmids 
were isolated and purified from the bacteria using ‘Qiagen Plasmid 
Mega’ kit. The extracted DNA was subjected to spectrophotometric 
quantification by taking absorbance at 260 nm while a ratio of 
absorbance at 260 and 280 nm at 1.8 or more was considered to be of 
high purity. Additionally, purified DNA was run on 0.8% agarose gel 
and the DNA bands were visualized under ultraviolet transilluminator. 

Cell culture and seeding

MCF-7 and 4T1 cells were grown in 25 cm2 culture flask in 
DMEM supplemented with 10% heat-inactivated FBS in a humidified 
atmosphere containing 5% CO2 at 37°C. Exponentially growing MCF-
7 and 4 T1 cells were trypsinised and following addition of fresh 
medium, the cell suspension was centrifuged at 10,000 rpm for 5 
min and the supernatant was discarded. Fresh medium was added to 
resuspend the pellet and the cells were counted using haemocytometer. 
Appropriate dilutions were made using culture medium to produce a 
cell suspension with concentration 5.0 x 104 cells/ml. One ml of the 
prepared cell suspension was subsequently added into each of the wells 
in 24-well plate and allowed to attach for overnight at 37°C and 5% CO2 
before siRNA transfection. 

Formulation of carbonate apatite complexes of ERBB2 siRNA 
and/or p53 plasmid and transfection of MCF-7 and 4T1 cells 

On the day of siRNA transfection, 100 mL of DMEM was prepared 
using 1.35 g of DMEM powder and 0.37 g of sodium bicarbonate with 
the pH subsequently adjusted to 7.4 using 0.1 M hydrochloric acid. 
The prepared DMEM solution was filtered using 0.2 μM syringe filter 
in laminar flow hood, followed by transferring 1 ml of the filtered 
medium into 1.5 ml microcentrifuge tubes. 4 μl of 1 M calcium chloride 
was then added into the microcentrifuge tubes, followed by addition 
of siRNA (40 nM) and p53 plasmid DNA (100 ng) and incubation at 
37°C for 30 min. After the incubation, 10% FBS was added into each 
microcentrifuge tube. Culture medium from the wells seeded one day 
before was aspirated and replaced with 1 mL of the prepared medium 
containing siRNA-loaded carbonate apatite nanoparticles in presence 
or absence of free drugs. Plates were then incubated at 37°C and 5% 
CO2 for two consecutive days. 

Cell viability assessment with 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay 

Following two days of siRNA transfection, the fraction of viable 
MCF-7 and 4T1 cells was determined using MTT assay. Briefly, 
50 μL of MTT (5 mg/mL in PBS) was added aseptically into each of 
the wells in siRNA transfected-plate, followed by incubation at 37°C 
and 5% CO2 for 4 h. After the incubation, medium containing MTT 
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was aspirated and the purple formazan crystals at the bottom of 
each well were dissolved by mixing with 300 μL of DMSO solution. 
Absorbance of the resulting formazan solution was then determined 
spectrophotometrically at wavelength 595 nm using microplate reader 
(DynexOpsys MR, US) with reference to 630 nm. Each experiment was 
performed in triplicates and the data were plotted as mean ± standard 
deviation (S.D.) of three independent experiments.

Data analysis

The cell viability in the treated wells was expressed as a percentage 
and was calculated using the absorbance values obtained from MTT 
assay by using the following formula:

Absorbance of treated sample% cell viability = ×100%
Absorbance of control

 

Tumour induction in Balb/c mice

The IMU animal ethics committee approved all the procedures used 
in the project with the approval no. being IMU 220/2010. Five-weeks-
old female Balb/c mice were purchased from Institute for Medical 
Research (IMR) and were housed under standard conditions according 
to appropriate animal care guidelines. The animals were housed in 
plastic cages with 3 mice placed in each cage inside a well-ventilated 
room at 22 ± 2°C with a 12-hr L: D cycle. The mice groups were fed 
with regular ad libitum. All the animals had free access to standard diet 
and water. 1x10(5) cells murine breast cancer 4T1 cells were injected 
subcutaneously into the mammary fat pad. When  tumors  reached  
around  75  mm3,  the  mice  were  randomly  assigned  to different 
groups for further study or treatments with six mice per group.

Intratumoral delivery of nanoparticle-associated ErbB2 
siRNA/p53 plasmid in Balb/c mice with 4T1 mammary 
carcinoma

In order to estimate gross body weight and subsequently, tumor 
volume regression, following induction of 4T1-induced mammary 
tumors, nanoparticle complex of ErbB2 siRNA and 53 plasmid was 
directly injected into the tumor. For a comparative study, in addition 
to  untreated control, nanoparticles alone and free anti-cancer drugs 
injected in both of the studies, other injected samples in gross tumor 
volume estimation was nanoparticle-loaded ERBB2 siRNA/p53 plasmid 
in presence of the individual anti-cancer drug. Depending on the 
grouping, the mice were treated with 100 µl of the particle suspension 
originally formulated in 1 ml of DMEM with 7 mM of Ca2+ in presence 
or absence of ERBB2 siRNA (800 nM) plus p53 plasmid (100 ng) and/
or anticancer drugs (100 nM), through intratumoral injection and the 
tumor volumes were estimated according to the modified ellipsoidal 
formula: 1/2(length × width2).

Statistical analysis

Statistical analysis was done using the SPSS statistical package 
(version 18.0 for Windows). LSD post-hoc test for one-way ANOVA 
was used to analyze and compare the significant difference between 
treated and non-treated samples. Data is presented as mean ± SD and 
P<0.05 is considered as statistically significant.

Results and Discussion
Intracellular delivery of HER2/ErbB2 siRNA and p53 gene 
into MCF-7 and 4T1 breast cancer cells

Since both ‘gain of function’ in the form of overexpressed 

oncogene(s), such as HER2/ErbB2 and ‘loss of function’ by mutated 
tumor suppressor genes, such as p53, contribute to the development 
of a variety of breast cancers, silencing of HER2/ErbB2 expression and 
providing wild-type p53 into breast cancer cells might block the cell 
proliferation- and survival-related signaling cascades influenced by the 
particular RTK as well as mutated p53. Carbonate apatite nanoparticles 
were used to complex with HER2/ErbB2 siRNA (constructed and 
validated by Qiagen) and/or p53 plasmid DNA prior to the 48 h 
incubation with MCF-7 (human breast cancer cell line) and 4T1 
(murine breast cancer cell line). As shown in Figure 1, neither HER2/
ErbB2 siRNA nor wild-type p53 gene when intracellularly delivered 
by nanoparticles could kill MCF-7 cells and inhibit the cell growth in 
comparison with the nanoparticles. However, when both the siRNA 
and the p53 plasmid were delivered together, they showed synergistic 
effect. Although MCF-7 cells have low expression level of HER2/ErbB2 
[35,36] and possess wild type p53 gene [37-39], an increase in p53 
expression beyond the basal level might promote cell proliferation/
survival in absence of the RTK. A similar finding was observed in 4T1 
cells (Figure 2) which also possess low level of HER2/ErbB2 [40,41], but 
are deficient of p53 [42-44], indicating that expression of wild-type p53 
could suppress in absence of HER2/ErbB2 the growth/proliferation of 
the tumor cells originally established by losing p53 expression [45]. 
Cell viability assessment using ‘All Stars Negative Control siRNA’, 
having no target sequence within the cellular mRNA pool (designed 
and synthesized by Qiagen) resulted in no cytotoxic effect irrespective 
of the siRNA doses used (not shown here), indicating the role of siRNA 
specificity in gene knockdown and consequential change in any cellular 
fate.

Intratumoral delivery of HER2/ErbB2 siRNA and wild-type 
p53 gene

In order for further evaluation of potential synergistic effect in vivo 
of HER2/ErbB2 knockdown and wild-type p53 expression in inducing 
death or inhibiting growth of tumor cells as observed in vitro in 
human and murine breast cancer cell lines irrespective of the presence 
or absence of normal p53, nanoparticle formulation of HER2/ErbB2 
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Figure 1: Cell viability study in vitro with MCF-7: untreated cells (C), 
nanoparticle-treated cells (C+N), ERBB2 siRNA-treated cells (C+N+ERBB2), 
p53 plasmid-treated cells (C+N+p53) and ERBB2 siRNA/p53 plasmid-
treated cells (C+N+ERBB2+p53). ERBB2 siRNA and/or p53 plasmid-loaded 
carbonate apatite particles were generated by exogenous addition of 4 μl of 
1 M calcium chloride and ERBB2 siRNA (40 nM) and/or p53 plasmid (100 
ng) to 1mL bicarbonate-buffered DMEM (pH7.4), followed by incubation at 
37°C for 30min and supplementation with 10% FBS prior to incubation with 
MCF-7 cells for a consecutive period of 48 h. MTT assay was subsequently 
performed with the absorbance being taken at wave length of 570 nm with 
reference to 630 nm. 
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regimens is ineffective because of the tumor’s cross-resistance to 
multiple chemotherapy drugs [51]. Silencing of an oncogene and/or 
expression of a normal tumor suppressor gene could either play an 
additive role or exert a synergistic effect through a potential ‘cross-talk’ 
with an anti-cancer drug, augmenting the overall therapeutic efficacy. 
In order to explore whether the intratumoral delivery of nanoparticle-
embedded ErbB2 siRNA and wild-type p53 gene could synergize with 
the anti-tumor effects of the conventional drugs, cisplatin was injected 
directly into the tumors growing in the mammary fat pad of Balb/c 
mice either in free form or together with the nanoparticle complex 
of ErbB2 siRNA/p53 plasmid. As shown in Figure 5, although free 
cisplatin demonstrated higher cytotoxic response than the nanoparticle 
complex of ErbB2 siRNA/p53 plasmid, however, cisplatin when 
treated along with the complex could not further enhance the effect 
(p<0.05), suggesting a possible additive effect on the same population 
of tumor cells subjected to growth arrest or apoptosis. On the contrary, 
as for doxorubicin (Figure 6) as well as paclitaxel (Figure 7), the 

siRNA and wild-type p53 gene was directly injected into the tumor of 
4T1 cells established in mammary fat pad of Balb/c mice (an immune-
competent model of aggressive breast cancer). As shown in Figure 3, 
although there was virtually no change in the average body weights 
of the mice treated intratumorally with either nanoparticles alone or 
combination of ErbB2siRNA and wild-type p53 plasmid compared 
with untreated control group, following induction of the tumors of 
measurable size using subcutaneously injected 4T1 cells , there was 
a noticeable and statistically significant reduction in tumor growth 
(p<0.05) over the period of observation in the particular group of mice 
receiving intratumoral injection of nanoparticle-associated ErbB2 
siRNA and wild-type p53 gene (Figure 4), suggesting a synergistic effect 
on tumor growth regression similarly as the earlier in vitro outcome. 
The rationale behind the absence of total inhibition of tumor growth 
could be due to the injection frequency of the sample with combined 
siRNA and plasmid DNA, which was once in our current experimental 
set-up and therefore the combined effect was very likely to subside in 
the later phase owing to the degradation of the therapeutic molecules 
Although the nanoparticles seemed to inhibit the tumor growth in 
the beginning, there was no substantial difference at the later phase 
between the control group (untreated) and the nanoparticle-treated 
group, suggesting that the nanoparticles of carbonate apatite might 
have negligible effect of toxicity.

Influences of HER2/ErbB2knockdown and wild-type p53 
expression on traditional anti-cancer drug-induced tumor 
regression

Conventional anti-cancer drugs, such as cisplatin, doxorubicin 
and paclitaxel with known therapeutic efficacy in malignant breast 
cancer [43-48] have limitations due to their toxic effects on normal 
cells and therefore the dosage of the drugs finally given to the 
patients is therapeutically insufficient leading to chemoresistance 
and tumor recurrence [49]. As a matter of fact, the majority of 
initially chemoresponsive tumors develop resistance to once effective 
chemotherapeutic agents [50] and a switch to other chemotherapy 
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Figure 2: Cell viability study in vitro with 4T1: untreated cells (C), 
nanoparticle-treated cells (C+N), ERBB2 siRNA-treated cells (C+N+ERBB2), 
p53 plasmid-treated cells (C+N+p53) and ERBB2 siRNA/p53 plasmid-
treated cells (C+N+ERBB2+p53). ERBB2 siRNA and/or p53 plasmid-loaded 
carbonate apatite particles were generated by exogenous addition of 4 μl of 
1 M calcium chloride and ERBB2 siRNA (40 nM) and/or p53 plasmid (100 
ng) to 1mL bicarbonate-buffered DMEM (pH7.4), followed by incubation at 
37°C for 30min and supplementation with 10% FBS prior to incubation with 
MCF-7 cells for a consecutive period of 48 h. MTT assay was subsequently 
performed with the absorbance being taken at wave length of 570 nm with 
reference to 630 nm.
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Figure 3: Effects on gross body weights of the mice group after intratumoral 
injection of nanoparticles alone, nanoparticle-loaded ERBB2 siRNA/p53 
plasmid, cisplatin, doxorubicin and paclitaxel.
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Figure 4: Effect on gross tumor volume regression following intratumoral 
injection of nanoparticle-associated ERBB2 siRNA and p53 plasmid. The 
mice bearing 4T1-induced mammary tumor were treated with 100 µl of the 
particle suspension originally formulated in 1 ml of DMEM with 7 mM of 
Ca2+ in presence or absence of ERBB2 siRNA (800 nM) plus p53 (100 ng) 
or anticancer drugs (100 nM), through intratumoral injection and the body 
weight was measured throughout the experiment from day 1 to day 29.
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nanoparticle complex of ErbB2siRNA/p53 plasmid apparently showed 
an inhibition on the growth of the tumors particularly at the later stage 
of the experimental period compared with the free individual drugs, 
suggesting a concerted role of ErbB2 knockdown and p53 expression 
in regression of tumor growth. This could be explained by the earlier 
findings that loss of p53 function in concert with ErbB2 expression 
(and/or lack of expression of bcl-2) might contribute to doxorubicin 
resistance [25] and MAP kinase cascades that can be stimulated by 
HER2/ErbB2 are essential for apoptotic response to paclitaxel-induced 
cell death while p53 could act as a survival factor in breast cancer cells 
treated with paclitaxel by blocking cells in G2/M phase of the cell cycle 
[52].

Conclusion
We have demonstrated that knockdown of ERBB2 gene and 

expression of normal p53 gene could be an attractive approach in 
synergistic inhibition of the growth of the established tumor and even 
could make the tumor more sensitive to the conventional drugs, such 
as doxorubicin and paclitaxel. 
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(800 nM) plus p53 (100 ng) and/or cisplatin (100 nM), through intratumoral 
injection and the tumor volumes were estimated according to the modified 
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