Intraindividual Tumor Heterogeneity in Neuroendocrine Tumors Revealed with 18F-FDG and 68Ga-DOTA-TATE PET/CT

Emre Demirci1, Betül Vatanakulu2, Reşit Akyel2, Fuat Dedede3 and Metin Halac2

1Department of Nuclear Medicine, Sisli Etfal Training and Research Hospital, Istanbul, Turkey
2Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
3Department of Nuclear Medicine Marmara Medical School, Istanbul, Turkey

*Corresponding author: Emre Demirci, M.D, Department of Nuclear Medicine, Sisli Etfal Training and Research Hospital, Istanbul, Turkey, Tel: +90 (212) 3735000; E-mail: emredemirci@gmail.com

Received date: Dec 19, 2015, Accepted date: Jan 27, 2016, Publication date: Jan 31, 2016

Abstract

68Ga-DOTA-TATE PET/CT is widely used in functional imaging of neuroendocrine tumors (NETs) and is superior to conventional somatostatin receptor scintigraphy (SRS), which is recommended for low grade NETs according to NANETS/ENETS guidelines. On the contrary 18F-FDG PET is suggested in patients with high grade NETs or when SRS is negative. However, tumor heterogeneity is a common finding along with NETs and causes differential expression of somatostatin receptor (sstr) and various FDG metabolisms. Here, we present a case where tumor heterogeneity is revealed with combined use of 18F-FDG PET/CT and 68Ga-DOTA-TATE PET/CT in the same patient and how does it influence clinical decision-making

Conclusion: We here present the first report of FFF-VMAT achieving a comparable plan quality with less delivery time to that of FF-VMAT and HT in head and neck cancer. FFF-VMAT is a highly efficient and feasible option for the treatment of head and neck cancer in clinical practice.

Keywords: Neuroendocrine tumors; 68Ga-DOTA-TATE PET/CT

Case Report

A 59-year-old female patient was diagnosed with WHO Grade 2 NET (Ki67: %25) by a tru-cut biopsy from a metastatic liver lesions discovered by a CT scan. Initial 18F-FDG PET/CT revealed intensely FDG avid multiple liver lesions with an index lesion measuring 9 × 7 cm (SUVmax:13.5) and FDG avid bone lesions (SUVmax:4.8) consistent with metastases. Other imaging methods and gastrointestinal endoscopies failed to detect primary tumor site.

A follow-up FDG PET/CT, performed 3 weeks after systemic chemotherapy, revealed progression in size and number of lesions with a slightly increase of SUVmax values (from15.2% to 17.2% increase) consistent with progression of metastatic disease. With an interval of 10 days, 68Ga-DOTA-TATE PET/CT was acquired to evaluate treatment option with peptide receptor radionuclide therapy (PRRT). Although liver metastases were intensely FDG avid (Figure 1A) they showed mildly increased or no significant uptake in 68Ga-DOTA-TATE PET/CT (Figure 1B).

Contrarily bone metastasis, which had a lower FDG avidity compared to liver lesions (Figure 1C), showed strongly increased uptake in 68Ga-DOTA-TATE PET/CT (Figure 1D) indicating high expression of sstr2.

68Ga-DOTA-TATE PET/CT was also detected more bone lesions compared to 18F-FDG PET/CT. In light of these findings patient was referred to intra-arterial 90Y-microsphere therapy to control liver metastases. Also 4 courses of PRRT treatment were planned to treat bone metastases.

Figure 1: A,C: PET, CT, PET/CT fusion and maximum intensity projection (MIP) images of 18F-FDG PET/CT. B,D: PET, CT, PET/CT fusion and MIP images of 68Ga-DOTA-TATE PET/CT.
68Ga-DOTA-TATE PET/CT is superior to conventional SRS in NETs and also recommended for low grade NETs [1]. However, tumor heterogeneity which can be seen in NETs causes differential sstr expression and various FDG metabolisms [2,3]. This case is a good example of how NETs may show intraindividual tumor heterogeneity and how it effects the selection of treatment choices.

References