Case Report Open access

Intraindividual Tumor Heterogeneity in Neuroendocrine Tumors Revealed with $^{18}\mbox{F-FDG}$ and $^{68}\mbox{Ga-DOTA-TATE PET/CT}$

Emre Demirci^{1*}, Betül Vatankulu², Reşit Akyel², Fuat Dede³ and Metin Halac²

¹Department of Nuclear Medicine, Sisli Etfal Training and Research Hospital, Istanbul, Turkey

*Corresponding author: Emre Demirci, M.D., Department of Nuclear Medicine, Sisli Etfal Training and Research Hospital, Istanbul, Turkey, Tel: +90 (212) 3735000; Email: emredemirci@gmail.com

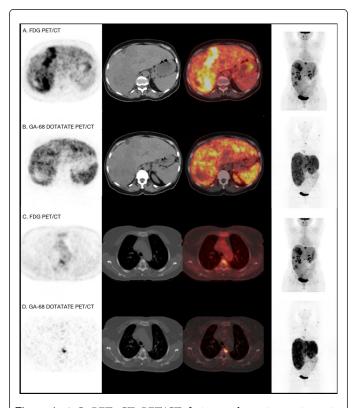
Received date: Dec 19, 2015, Accepted date: Jan 27, 2016, Publication date: Jan 31, 2016

Copyright: © 2016 Demirci E, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License; which permits unrestricted use; distribution; and reproduction in any medium; provided the original author and source are credited.

Abstract

⁶⁸Ga-DOTA-TATE PET/CT is widely used in functional imaging of neuroendocrine tumors (NETs) and is superior to conventional somatostatin receptor scintigraphy (SRS), which is recommended for low grade NETs according to NANETS/ENETS guidelines. On the contrary ¹⁸F-FDG PET is suggested in patients with high grade NETs or when SRS is negative. However, tumor heterogeneity is a common finding along with NETs and causes differential expression of somatostatin receptor (sstr) and various FDG metabolisms. Here, we present a case where tumor heterogeneity is revealed with combined use of ¹⁸F-FDG PET/CT and ⁶⁸Ga-DOTA-TATE PET/CT in the same patient and how does it influence clinical decision-making Conclusion: We here present the first report of FFF-VMAT achieving a comparable plan quality with less delivery time to that of FF-VMAT and HT in head and neck cancer. FFF-VMAT is a highly efficient and feasible option for the treatment of head and neck cancer in clinical practice.

Keywords: Neuroendocrine tumors; ⁶⁸Ga-DOTA-TATE PET/CT


Case Report

A 59-year-old female patient was diagnosed with WHO Grade 2 NET (Ki67: %25) by a tru-cut biopsy from a metastatic liver lesions discovered by a CT scan. Initial $^{18}\text{F-FDG}$ PET/CT revealed intensely FDG avid multiple liver lesions with an index lesion measuring 9 \times 7 cm (SUVmax:13.5) and FDG avid bone lesions (SUVmax:4.8) consistent with metastases. Other imaging methods and gastrointestinal endoscopies failed to detect primary tumor site.

A follow-up FDG PET/CT, performed 3 weeks after systemic chemotherapy, revealed progression in size and number of lesions with a slightly increase of SUVmax values (from15.2% to 17.2% increase) consistent with progression of metastatic disease. With an interval of 10 days, ⁶⁸Ga-DOTA-TATE PET/CT was acquired to evaluate treatment option with peptide receptor radionuclide therapy (PRRT). Although liver metastases were intensely FDG avid (Figure 1A) they showed mildly increased or no significant uptake in ⁶⁸Ga-DOTA-TATE PET/CT (Figure 1B).

Contrarily bone metastasis, which had a lower FDG avidity compared to liver lesions (Figure 1C), showed strongly increased uptake in 68 Ga-DOTA-TATE PET/CT (Figure 1D) indicating high expression of sstr2.

 $^{68}\text{Ga-DOTA-TATE}$ PET/CT was also detected more bone lesions compared to $^{18}\text{F-FDG}$ PET/CT. In light of these findings patient was referred to intra-arterial $^{90}\text{Y-microsphere}$ therapy to control liver metastases. Also 4 courses of PRRT treatment were planned to treat bone metastases.

Figure 1: A,C: PET, CT, PET/CT fusion and maximum intensity projection (MIP) images of ¹⁸F-FDG PET/CT. B,D: PET, CT, PET/CT fusion and MIP images of ⁶⁸Ga-DOTA-TATE PET/CT.

²Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey

³Department of Nuclear Medicine Marmara Medical School, Istanbul, Turkey

Citation: Demirci E, Vatankulu B, Akyel R, Dede F, Halac M (2016) Intraindividual Tumor Heterogeneity in Neuroendocrine Tumors Revealed with ¹⁸F-FDG and ⁶⁸Ga-DOTA-TATE PET/CT. J Nucl Med Radiat Ther 7: 277. doi:10.4172/2155-9619.1000277

Page 2 of 2

⁶⁸Ga-DOTA-TATE PET/CT is superior to conventional SRS in NETs and also recommended for low grade NETs [1]. However, tumor heterogeneity which can be seen in NETs causes differential sstr expression and various FDG metabolisms [2,3]. This case is a good example of how NETs may show intraindividual tumor heterogeneity and how it effects the selection of treatment choices.

References

 Phan AT, Oberg K, Choi J, Hassan MM, Strosberg JR, et al. (2010) NANETS consensus guideline for the diagnosis and management of

- neuroendocrine tumors: well-differentiated neuroendocrine tumors of the thorax (includes lung and thymus). Pancreas 39: 784-798.
- Naswa N, Sharma P, Gupta SK, Karunanithi S, Reddy RM, et al. (2014)
 Dual tracer functional imaging of gastroenteropancreatic neuroendocrine
 tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT:
 competitive or complimentary? Clin Nucl Med 39: e27-34.
- Yang Z, Tang LH, Klimstra DS (2011) Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg 35: 853-860.