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Abstract

It is well documented that blueberry phenolic compositions, such as phenolic acids and flavonoids differ based on
species and cultivars. However, phenolic compositions in Florida blueberries have been little explored. Information
on Florida blueberries are of interest as they are harvested earlier than other areas of the United States, which may
result in compositional differences due to shorter daylight hours and cooler temperatures. Samples were harvested
from University of Florida grower-cooperator farm near Gainesville, FL. After liquid-liquid extraction and C-18 SPE
cartridge purification, concentrations of phenolic acids and flavonoids of twenty two blueberry cultivars (20 highbush
and 2 rabbiteye) were measured using HPLC. Five phenolic acids (gallic acid, protocatechuic acid, chlorogenic acid,
caffeic acid and ferulic acid), two flavan-3-ols (catechin and epicatechin) and five flavonols (quercetin-3-galactoside
or quercetin-3-glucoside, quercetin-3-arabinoside, myricetin, quercetin and kaempferol) were identified and
quantified. Chlorogenic acid was the major component in highbush blueberries. Flavonoid and phenolic acid
composition were profoundly different among Florida blueberries and these differences have not been previously
reported. The first two components of PCA explained 95% of the variation totally; it showed clear differentiation of
blueberry cultivars based on phenolic composition. The majority of the variation between the cultivars was due to
variation in quercetin-3-galactoside or glucoside, quercetin-3-arabinoside and chlorogenic acid, which are most likely
due to genetic and maturity differences. Complete-linkage clustering analysis displayed five significantly different
(p<0.05) clusters of blueberries, which were in agreement with PCA results, although some small differences were
noted. Furthermore, Florida blueberries can be differentiated based on phenolic composition between highbush and
rabbiteye species and varieties. Low flavanol content in rabbiteye blueberries may be related to maturity as these
compounds typically decrease as berries ripen. Although the concentrations for phenolic compositions were lower
than found in other reports, Florida blueberries contained a greater range of phenolic compounds. This information
is valuable for blueberry breeding programs and growers for development of higher phenolic composition cultivar.

Keywords: Blueberry; Cultivars; Phenolic acid; Flavonoid; HPLC;
PCA; Complete-linkage clustering

Introduction
Florida blueberries are a major source of spring or early summer

blueberries, currently ranking fifth for commercial acreage in the U.S.
market [1]. It was reported that the acreage and production has
increased by 73% and 132% between 2007 and 2012 [1]. The twenty
two cultivars investigated in this study are already established
including major cultivars ‘Star’, ‘Emerald’, ‘Jewel’, ‘Springhigh’ and
‘Primadonna’; as well as newly released in 2009, ‘Meadowlark’, ‘Flicker’,
‘Bobolink’ and ‘Raven’. These blueberries are all low-chill cultivars
which only require around 150-800 chill hours below 45 degrees to set
fruits. Many of these blueberries are patented cultivars released by the
University of Florida and the phenolic content has yet to be
determined, and can provide important information to blueberry
breeders and producers for high value-added and phenolic content
cultivar development. Phenolic compounds include phenolic acids and
flavonoids, which are abundant in vegetables, fruits and other food

products. These compounds confer unique taste, flavor, and health-
promoting properties [2-5]. Phenolic acids and flavonoids are
important antioxidant compounds performing a series of functions
directly or indirectly with human low-density lipoproteins [6], can
enhance postprandial serum antioxidant status and may reduce many
chronic degenerative diseases [7]. Due to these health benefits there is
an increasing interest in determining the antioxidant activities of these
compounds [6,8-13]. Phenolic acids are secondary metabolites found
in fruits [14-17], beans [18], and other vegetables [19,20]. These acids
are associated with sour, bitter, and astringent flavors found in
vegetable proteins [21]. Hydroxycinnamic acids such as chlorogenic
acid and caffeic acid are a specific class of phenolic acids that have been
found to play a role in vegetable maturation and plant defense, as well
as influence fruit flavor quality [22]. Flavonoids are also secondary
metabolites of plants with polyphenolic structure that are synthesized
from phenylalanine through the shikimic acid pathway [23]. Among
flavonoids, flavan-3-ols which are the building blocks for
proanthocyanidins and anthocyanidins, are of interest in this study.
Flavan-3-ols are most prevalent in green tea, unfermented, dried and
unroasted cocoa beans [24] and chocolate [25]. Flavonols are also
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present in a wide variety of fruits and vegetables [5,26]. The profile of
the nonvolatile compounds with antioxidant capacity (phenolic acids,
flavonoids) in blueberries at different locations had been reported.
These locations include Chatsworth, New Jersey, USA [27], Georgia,
USA [10], Spain [28] and near Olsztyn, Poland [29]. However, the
profile of these compounds in highbush and rabbiteye blueberries, two
major species in Florida, is limited [10]. Vaccinium corymbosum L.–
highbush blueberry, is a species of blueberry native to Northeastern
America, found along the Gulf Coast from South Georgia to East Texas
and in California. Vaccinium virgatum (commonly known as either
rabbiteye blueberry or southern black blueberry) is a species of
blueberry native to the Southeastern United States. The earliest
ripening southern highbush cultivars reach maturity about 4 to 6
weeks earlier than the earliest rabbiteye cultivars grown at the same
location. The ability to ripen blueberries earlier than other states in the
U.S. ensures a higher price for these fruits. Specifically the market
period from April 1 to May 10 is available almost exclusively to Florida
growers and contribute to the year-round available of fresh market
blueberries [30]. The aim of the study is to investigate the profile of
phenolic compounds in Florida low-chill highbush and rabitteye
blueberry cultivars, compare the differences in cultivars and subgroup
them based on phenolic compositions. This information on Florida
blueberry cultivars with low-chill and early ripening is important to
help blueberry breeders and growers chose and/or grow those
blueberries with the desired phenolic compositions.

Materials and Methods

Standards
The following external standards were obtained from Sigma

Chemical Co. (St. Louis, MO): gallic acid, caffeic acid, ferulic acid,
chlorogenic acid, protocatechuic acid and Kaempferol, quercetin,
myricetin, quercetin-3-glucoside, quercetin-3-galactoside, and
quercetin-3-o-α-L-arabinoside, (+) catechin and (-) epicatechin. All
organic solvents used were of HPLC grade. Methanol, acetone, ethyl
acetate and acetonitrile were purchased from Fisher Chemical (Fair
Lawn, NJ); formic acid was bought from Fluka; all water was deionized
and then distilled.

All standards were prepared as stock solutions in methanol and
stored in darkness at -18 ± 2°C. The concentrations for each stock
standard are as follows; 2.45 mg/ml chlorogenic acid, 2.25 mg/ml
caffeic acid, 2.02 mg/ml protocatechuic acid, 2.45 mg/ml ferulic acid,
3.66 mg/ml gallic acid, 3.7 mg/ml kaempferol, 5.5 mg/ml quercetin
dehydrate, 2.5 mg/ml myricetin, 0.1 mg/ml quercetin 3-galactoside, 0.1
mg/ml quercetin 3-glucoside, 0.1 mg/ml quercetin 3-o-α-L-
arabinoside, 6.0 mg/ml (+)-catechin hydrate and 5.7 mg/ml (-)-
epicatechin. Each day working solutions were prepared by 100 ×
dilution with initial HPLC gradient solvent.

Samples
The highbush and rabbiteye blueberry samples were harvested ripe

(the color of the berry skin should be from blue to dark blue) from
University of Florida grower-cooperator farm near Gainesville, FL
(29_470 3200 N, 82_070 2200 W). Harvest date was on May 2012 for
highbush blueberries and May 2 2012 for rabbiteye blueberries.
Approximately 200 gram samples (fresh weight) were randomly
collected and quickly stored in freezer (-18 ± 2°C) using dry ice.
Samples were transferred to Lake Alfred citrus and research education
center (700 Experiment Station Rd. Lake Alfred, FL 33850) on dry ice.

Extraction and analysis of phenolic acids, flavan-3-ol and
flavonols

Extraction procedure was carried out using mixed solvents: a
combination of methanol (40%), acetone (40%) water (20%) and
formic acid (0.1%). Sub samples of the frozen berries (4.0 ± 0.2g) were
thawed and placed into a 100 mL stainless centrifuge tube and 24 ml of
the mixed solvents was added.

Samples were homogenized in a Lourdes homogenizer (Vernitron
Medical Products, Carlstadt, N.J.) for 1.5 min and sonicated (Fisher
Scientific FS-9 Ultrasonic Cleaner) at room temperature in the dark for
20 min. Sonicated samples were then transferred into a clean 50 ml
centrifuge tube (Fisher Scientific) and centrifuged at 4380 rpm for 10
min.

The clear supernatant was collected and concentrated using a rotary
evaporator at 35°C water bath under 70 cmHg vacuums. It was further
purified using a C-18 SPE cartridge (Phenomenex Strata C18-E 1000
mg/6 ml, 18.0% carbon loading, 500 m2/g surface area, 70° A pore size,
55 μm particle size). The concentrated sample was placed on the top of
a 6 ml column (preconditioned with 10 ml of methanol followed by
10ml acidified water (3% formic acid)). A vacuum was used to pull the
sample slowly through the cartridge (approximately one drop/min).
The absorbed compounds on the column were first washed with 10 ml
distilled water, and then slowly eluted with 8 ml of ethyl acetate. The
eluent was collected into a 20-ml glass vial and blown to dryness under
pure nitrogen. The resulting residue was re-dissolved in 1.0 ml
methanol, clarified with a 0.45 µm filter and placed in an amber 4-ml
vial (Fisher Scientific) prior to injection.

HPLC conditions
A Thermo Finnigan Surveyor HPLC system (Waltham, Mass.,

U.S.A.) coupled with a Phenomenex C-18 column (synergi, 250 × 4.6
mm, 4μ) and a supelguard LC-18 guard column, 20 × 4.0 mm
(Supelco, Bellefonte, PA) was used to analyze the phenolics. Column
effluent was monitored on a photo diode array, PDA detector.
Absorbance spectra between 200 and 600 nm were recorded for all
peaks. Maximum wavelength 279 nm for flavan-3-ols, 360 nm for
flavonols and 260-330 nm for phenolic acids was used.

Gradient elution was employed with a mobile phase according to
Schwarz et al. (2003) [31] and consisted of 87% water, 3% acetonitrile,
10% formic acid (solvent A) and 40% water, 50% acetonitrile, 10%
formic acid (solvent B). Elution details were as follows: 0-15 min,
linear gradient from 85% A/15% B to 57% A/43% B at flow rate of 0.5
ml/min; 15-45 min, linear gradient from 57% A/43% B to 20% A/80%
B at flow rate of 0.5 ml/min. The column was equilibrated for at least
15 min before the next sample was injected at flow rate of 1 ml/min. 15
µl of each extracted sample was injected into the column using Thermo
Finnigan autosampler. HPLC chromatograms were analyzed using
Xcalibur software (Thermo Electron Corp., Waltham, Mass., U.S.A.).

Identification of phenolic acids, flavan-3-ol and flavonols
Two different methods were used in combination for the

identification of HPLC peaks in the blueberry samples according to Xu
and Chang [32]. The first method used external standards and
identified peaks by comparing retention time and UV spectrum of
each standard to the produced chromatogram [33]. The second
method utilized internal standards, using the standard addition
method [32]. The increase of peak areas at each retention time and
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comparison of UV spectrum resulted in a second validation for each
compound measured.

Quantification of phenolic acids, flavan-3-ol and flavonols
All identified phenolics were quantified with external standards

using the same HPLC gradients as previously described. The stock
solution of each standard was diluted into six series of working
solutions with the initial composition of HPLC gradient solvent. Six-
point calibration plots were constructed using peak areas obtained by
adding known amounts of standards to initial HPLC gradient solvent
and used to calculate the concentrations of compounds in each
blueberry cultivar. Each point on the calibration curve was performed
in triplicate. Compounds concentrations were expressed as
micrograms per gram (μg/g) on a fresh weight basis.

Data analyses
Differences in individual phenolic compounds between the

blueberry cultivars were evaluated using one-way analysis of variance
(ANOVA) with Tukey HSD. All analyses were performed with IBM
SPSS statistics 20.0 for Windows (SPSS Inc., Chicago, IL). Principle
component analysis (PCA) and complete-linkage clustering analysis
was performed using Unscrambler software (version 10.0.1 (CAMO
ASA, Oslo, Norway). Variables were mean-centered and scaled for
PCA and clustering analysis.

Results and Discussion

Separation and identification of blueberry phenolic acids,
flavan-3-ol and flavonols

Twenty highbush blueberry cultivars including Sapphire, Windsor,
Star, Bobolink, Primadonna, Springwide, Abundance, Southern Belle,
Meadowlark, Emerald, Snow chaser, Springhigh, Raven, Southmoon,
Sweetcrisp, Scintilla, Jewel, Farthing, Flicker and Rebel; and two
rabitteye cultivars, Savory and Climax were selected in this study. Five
phenolic acids, gallic acid, protocatechuic acid, chlorogenic acid,
caffeic acid, ferulic acid; two flavan-3-ols including catechin and
epicatechin; and five flavonols, quercetin-3-galactoside or quercetin-3-
glucoside,quercetin-3-arabinoside, myricetin, quercetin and
kaempferol were identified and quantified. Retention time and
wavelength of these compounds is shown in (Table 1). All of the
compounds investigated had HPLC good resolution, except
quercetin-3-galactoside and quercetin-3-glucoside. These were difficult
to identify as they both eluted at the same retention time and had very
similar spectra. The spectra of chlorogenic acid and quercetin-3-
galactoside, quercetin-3-glucoside standards were compared with the
spectra of blueberry extracts, ‘Emerald’ and ‘Southern Belle’ (Figure 1).
The spectrum of chlorogenic acid in ‘Emerald’ extract was perfectly
lined up with the one in standard (Figure 1 A). The identification of
the compound responsible for the spectrum in (Figure 1 B) was
difficult as both quercetin-3-galactoside and quercetin-3-glucoside co-
eluted under current method conditions and had essentially identical
UV spectra. The elution parameters need to be investigated further for
separation of these two compounds.

RT λmax (nm) Compounds

5.84 271 gallic acid

8.78 295 protocatechuic acid

9.54 279 catechin

10.18 295, 326 chlorogenic acid

11.41 279 epicatechin

13.07 298, 323 caffeic acid

19.17 353 quercetin-3-galactoside or glucoside

21.3 295, 322 ferulic acid

21.47 357 quercetin-3-arabinoside

24.21 370 myricetin

31.41 370 quercetin

42.05 366 Kaempferol

Table 1: Primary phenolics identified in Florida blueberries.

Figure 1: The spectrum of phenolic identified in blueberry cultivars
compared with the standard. (A) Chlorogenic acid standard is the
solid line; chlorogenic acid in blueberry cultivar ‘Emerald’ is the
dashed line. (B) Quercetin-3-galactoside standard is represented by
the solid line; quercetin-3-glucoside standard is the dotted line with
grey color; the dashed line represents the spectrum of quercetin-3-
glucoside or quercetin-3-galactoside of blueberry cultivar ‘Southern
Belle’ extracts.

The detailed phenolic composition of each cultivar is shown in Table
2 and Table 3. A pie chart was used to demonstrate the phenolic
distribution of one cultivar, ‘Meadowlark’. ‘Meadowlark’ was selected as
it was the only cultivar that contained ferulic acid of the high-bush
blueberries (Figure 2) and clearly displayed the phenolic complexity of
blueberries. In total, flavonol aglycons accounted for more than half of
the phenolics consisted of quercetin-3-galactoside or glucoside and
quercetin-3-arabinoside; and phenolic acids comprised about 36% of
the total phenolics, followed by flavan-3-ol (catechin); smaller portion
of quercetin and kaempferol are quantified; myricetin and epicatechin
were not detected. In terms of phenolic acid, simple phenolic acids
comprised of ferulic acid, caffeic acid and gallic acid were accounted
for 15%; complex phenolic acids which were chlorogenic acid and
protocatechuic acid accounted for around 21%. Chlorogenic acid was
the major phenolic acid, accounted for 18% of total phenolics.
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Cultivars Catechin Epicatechi
n

Sum of

flavan-
3-ol

Quercetin-3
-
galactoside
&glucoside

Quercetin-3-
arabinoside

Myricetin Quercetin Kaempferol Sum of
flavonols

Total
phenolics

Subgroup

Raven 0.0 0.0 0.0 7.6 ± 1.3 10.6 ± 1.4 0.6 ± 0.1 0.6 ± 0.0 0.3 ± 0.0 19.6 29.5 1

Abundance 0.0 0.0 0.0 19.3 ± 1.2 15.2 ± 1.3 0.0 0.9 ± 0.1 0.2 ± 0.0 35.6 48.9 1

Southmoon 0.0 0.0 0.0 11.4 ± 1.0 10.3 ± 0.5 1.5 ± 0.2 0.4 ± 0.0 0.3 ± 0.0 23.9 49.1 1

Rebel 0.0 0.0 0.0 26.1 ± 2.0 6.7 ± 1.4 0.0 0.2 ± 0.0 0.2 ± 0.0 33.2 50.9 1

Meadowlark 2.7 ± 1.2 0.0 2.7 18.0 ± 1.3 15.0 ± 1.5 0.0 0.8 ± 0.1 0.4 ± 0.0 34.1 57.6 1

Flicker 1.4 ± 0.7 2.6 ± 0.5 4.0 15.3 ± 0.8 19.3 ± 2.2 0.0 0.3 ± 0.0 0.4 ± 0.1 35.3 59.3 1

Sweetcrisp 6.0 ± 3.9 0.0 6.0 30.4 ± 0.3 6.9 ± 0.1 1.7 ± 0.3 0.4 ± 0.0 0.1 ± 0.0 39.6 64.2 1

Springhigh 0.0 0.0 0.0 18.3 ± 1.3 7.6 ± 1.7 0.9 ± 0.2 0.4 ± 0.1 0.3 ± 0.0 27.5 71.7 1

Scintilla 0.0 0.0 0.0 17.6 ± 2.0 27.2 ± 1.9 1.1 ± 0.1 0.5 ± 0.0 0.2 ± 0.0 46.6 79.7 1

Farthing 0.0 0.0 0.0 13.3 ± 3.2 13.1 ± 2.2 3.4 ± 1.2 0.5 ± 0.1 0.2 ± 0.0 30.6 81.7 2

Primadonna 0.1 ± 0.2 6.8 ± 2.0 6.9 24.7 ± 1.2 5.0 ± 0.3 1.8 ± 0.6 0.3 ± 0.0 0.2 ± 0.0 31.9 86.4 2

Jewel 0.0 0.0 0.0 36.0 ± 1.1 15.7 ± 1.2 2.6 ± 1.0 0.3 ± 0.1 0.2 ± 0.0 54.8 102.1 2

Snow chaser 0.0 0.0 0.0 8.1 ± 0.9 36.3 ± 1.2 0.0 0.8 ± 0.1 0.2 ± 0.0 45.3 125.1 2

Southern

Belle

0.0 3.0 ± 0.8 3.0 44.9 ± 3.2 10.4 ± 1.8 0.0 0.8 ± 0.1 0.2 ± 0.0 56.2 139.8 2

Bobolink 1.5 ± 0.6 9.9 ± 1.8 11.4 27.7 ± 2.4 17.6 ± 5.8 1.4 ± 0.3 0.5 ± 0.1 0.2 ± 0.0 47.4 145.7 2

Climax 0.6 ± 0.7 9.5 ± 5.6 5.3 1.1 ± 0.1 13.5 ± 0.9 0 0.2 ± 0.0 0.1 ± 0.0 14.9 149.4 3

Springwide 0.0 10.0 ± 0.6 10.0 31.9 ± 2.8 5.5 ± 1.6 2.5 ± 0.1 0.4 ± 0.1 0.1 ± 0.0 40.4 151.3 3

Windsor 4.9 ± 2.2 13.6 ± 2.6 18.5 16.4 ± 1.0 13.8 ± 1.5 3.1 ± 0.8 0.2 ± 0.0 0.2 ± 0.0 33.7 165.9 3

Star 1.9 ± 0.2 14.2 ± 2.3 16.1 38.0 ± 5.0 5.0 ± 0.1 3.4 ± 0.8 0.2 ± 0.0 0.2 ± 0.0 46.8 166.4 3

Savory 0.0 0.0 0.0 4.5 ± 1.2 2.8 ± 0.4 0.0 0.2 ± 0.0 0.1 ± 0.0 7.6 209.8 3

sapphire 23.9 ± 4.4 23.1 ± 1.0 47.0 12.4 ± 0.4 28.7 ± 2.2 1.5 ± 0.2 0.2 ± 0.0 0.1 ± 0.0 42.7 253.8 3

Emerald 0.0 0.0 0.0 14.1 ± 4.1 39.0 ± 8.6 0.0 1.0 ± 0.2 0.0 54.1 262.5 3

Table 3: Flavonoids and total phenolics concentration (µg/g) of 22 blueberry cultivars extracted with methanol/acetone/water/formic acid
(40/40/20/0.1).
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Figure 2: Distribution of phenolic acids and flavonoids from
‘meadowlark’ cultivar.

Identification of phenolic acids and flavonoids has been widely
reported [10,1 27,29,34,35]. The high amount of chlorogenic acid in
highbush blueberries found in our work is in agreement with the
results found by Kader et al. (1996) [35] and Cho et al. (2004) [36].
They showed that of all phenolic acids, chlorogenic acid was the most
dominant. However, using GC, Zadernowski et al. (2005) [29] reported
that p-courmaric acid, not chlorogenic acid, was the main phenolic
acid in European blueberries (Vaccinium myrtillus) from trimethylsilyl
derivatives of phenolic acids. This difference s is most likely due to type
of analysis used. Of the flavonoids studied, kaempferol and myricetin
were not reported in four highbush blueberrycultivars grown in
Chatsworth NJ, in 1983 [27]. Other studies also reported undetectable
levels of kaempferol or myricetin in blueberry cultivars from other
geographic areas [5,37,38]. These compositional differences in
blueberries from other areas in comparison to Florida would need to
be verified with newer analytical instrumentation. More modern
analytical equipment may now be sensitive enough to detect both
kaempferol and myricetin in these berries as they were only detected in
trace amounts detected in our study.

Sellappan et al. (2002) [10] quantified gallic acid, p-hydroxybenzoic
acid, caffeic acid, ferulic acid, ellagic acid and the flavonoids of
catechin, epicatechin, myricetin, quercetin, and kaempferol in 12
rabbiteye blueberry (Vaccinium ashei) cultivars and 5 southern
highbush blueberry (Vaccinium corymbosum L. Hybrids) cultivars in
Georgia harvested in June. They used the same species as in this study
but different cultivars; interestingly chlorogenic acid and
protocatechuic acid which was found abundantly in our research were
not detected. Chlorogenic acid (a caffeic acid ester linked to quinic
acid) and protocatechuic acid (precursor of gallic acid) are derived
from phenylalanine via the shikimic acid pathway, belonged to
different groups of phenolic acids, the hydroxycinnamic acid and
hydroxybenzoic acids [39,40]. The absence of these two acids could be
attributed to the hydrolysis or secondary metabolism to simple
phenolic acids, or may be an effect of cultivar differences or the place
where the berries were grown.Although the two phenolic acids were
present in our result, the concentrations of other phenolic compounds
found were much lower than in Sellappan et al. (2002) study.

Effect of blueberry cultivars on the profile of phenolic acids,
flavan-3-ol and flavonols

Florida blueberry flavonoid and phenolic acid composition were
profoundly different and these differences have not been previously
reported (Table 3 and Figure 3). Generally, the blueberry cultivars can
be divided into three groups based on the sum of all the phenolics
(Table 3). The first group includes ‘Raven’, ‘Abundance’, ‘Southmoon’,
‘Rebel’, ‘Meadowlark’, ‘Flicker’, ‘Sweetcrisp’, ‘Springhigh’, and ‘Scintilla’.
These had the least amount of phenolics ranging from 29.5-79.7 μg/g
fresh fruit. The second group included ‘Farthing’, ‘Primadonna’,‘Jewel’,
‘Snow chaser’, ‘Southern Belle’ and ‘Bobolink’. Phenolics ranged from
81.7-145.7 μg/g of total phenolics. ‘Climax’, ‘Springwide’, ‘Windsor’,
‘Star’, ‘Savory’, ‘Sapphire’ and ‘Emerald’ comprised the third group and
contained the highest amounts of phenolics, 149.4-262.5 μg/g.
Rabbiteye blueberries, ‘Climax’ and ‘Savory’ had the largest amount of
phenolic acids, but smaller portion of flavonols.

Figure 3: Relative distributions of concentration of phenolic acids
and flavonoids in 22 blueberry cultivars.

The difference in phenolic acids and flavonols profiles between the
blueberries may be related to a number of factors. Phenolic content is
affected by pre-harvest environmental conditions, such as light and
temperature, maturity at harvest and genetic differences [41-43]. The
berries in our study did not go through any postharvest storage or
processing, other factors that can alter phenolic acid content [44]. The
variation of phenolic acids in the different cultivars are most likely due
to genetic and maturity differences. Castrejón et al. [11] showed that
flavonoid biosythesis is linked to developmental stage. Specifically
differences may be linked to enzymatic activity at different
developmental stages. Both phenolic acid and flavanol synthesis rely
on enzymatic schemes. Phenolic acids are from the shikimic acid
pathway and flavonols are from the phenolpropanoid pathway [45].
The low flavanol content noted in ‘Climax’ and ‘Savory” may be related
to maturity as these compounds typically decrease as berries ripen
[11]. This suggests that these two cultivars were more mature than the
other blueberries in the study. Phenolic acids accounted for the major
percentage of the total phenolics by weight and most likely made a
strong contribution to the differences of the profile of cultivars.
Interestingly, the cultivars could also be separated into three similar
groups from the least amount to the greatest by weight (Table 2), 10
cultivars in the first group, ‘Raven’, ‘Abundance’, ‘Rebel’, ‘Sweetcrisp’,
‘Flicker’, ‘Meadowlark’, ‘Southmoon’, ‘Scintilla’, ‘Springhigh’ and ‘Jewel’;
7 cultivars in the second group, ‘Primadonna’, ‘Farthing’, ‘Snow chaser’,
‘Southern Belle’, ‘Bobolink’, ‘Springwide’ and ‘Star’; 5 cultivars in the
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third group, ‘Windsor’, ‘Climax’, ‘Sapphire’, ‘Savory’ and ‘Emerald’. This
was a slightly different subgrouping than that obtained from the sum
of phenolics. ‘Jewel’ was grouped into the first subgroup instead of the

second one; ‘Springwide’ and ‘Star’ were moved to the second
subgroup based on phenolic acids.

Cultivars Gallic Acid Protocatechuic acid Chlorogenic acid Caffeic acid Ferulic acid Sum of phenolic Subgroup

Raven 1.6 ± 0.3 1.8 ± 0.5 5.6 ± 1.7 0.9 ± 0.1 0 9.8 1

Abundance 0.7 ± 0.0 0 11.6 ± 0.4 1.0 ± 0.2 0 13.3 1

Rebel 2.2 ± 0.3 1.5 ± 0.3 13.0 ± 8.6 1.0 ± 0.0 0 17.7 1

Sweetcrisp 2.9 ± 0.0 1.4 ± 0.2 12.7 ± 0.1 1.5 ± 0.0 0 18.6 1

Flicker 3.8 ± 0.2 4.0 ± 0.2 10.8 ± 1.0 1.5 ± 0.2 0 20 1

Meadowlark 0.6 ± 0.1 1.6 ± 0.2 10.4 ± 2.6 6.3 ± 1.1 1.9 ± 0.2 20.7 1

Southmoon 1.8 ± 0.1 0.8 ± 0.3 21.7 ± 1.5 0.9 ± 0.1 0 25.2 1

Scintilla 1.2 ± 0.1 0.9 ± 0.2 29.7 ± 0.3 1.4 ± 0.2 0 33.1 1

Springhigh 1.8 ± 0.4 1.2 ± 0.2 39.4 ± 4.5 1.9 ± 0.2 0 44.2 1

Jewel 0.9 ± 0.2 2.0 ± 0.6 43.1 ± 4.4 1.3 ± 0.3 0 47.3 1

Primadonna 2.4 ± 0.2 0 42.5 ± 5.0 2.7 ± 0.5 0 47.5 2

Farthing 1.6 ± 0.2 3.9 ± 0.9 44.2 ± 0.6 1.4 ± 0.2 0 51.2 2

Snow chaser 1.5 ± 0.3 4.1 ± 1.6 71.2 ± 0.9 3.0 ± 0.3 0 79.8 2

Southern Belle 2.1 ± 0.8 0 76.9 ± 0.5 1.7 ± 0.3 0 80.7 2

Bobolink 2.4 ± 0.3 0 79.8 ± 18.4 4.6 ± 0.8 0 86.9 2

Springwide 2.2 ± 0.1 0 96.4 ± 6.8 2.3 ± 0.2 0 100.9 2

Star 3.0 ± 0.9 0 96.9 ± 9.9 3.5 ± 0.6 0 103.5 2

Windsor 3.5 ± 0.2 0 106.6 ± 5.8 3.6 ± 0.6 0 113.7 3

Climax 1.1 ± 0.0 0 119.7 ± 41.1 3.4 ± 0.6 0.3 ± 0.1 124.4 3

sapphire 6.3 ± 1.4 0 149.5 ± 23.7 8.2 ± 3.8 0 164 3

Savory 0.8 ± 0.2 0 196.3 ± 39.9 4.5 ± 0.9 0.6 ± 0.1 202.1 3

Emerald 1.9 ± 0.6 1.8 ± 0.7 201.1 ± 42.6 3.4 ± 1.1 0 208.3 3

Table 2: Phenolic aids concentration (µg/g) of 22 blueberry cultivars extracted with methanol/acetone/water/formic acid (40/40/20/0.1).

The distribution of 22 blueberry cultivars based on each phenolic
measured is shown using PCA (Figure 4) and complete-linkage
clustering (Figure 5). Complete-linkage clustering was used to confirm
the groupings found using PCA. The first two components of PCA
explained 95% of the variation, with PC1 and PC2 contributing 80%
and 15%, respectively (Figure 4). There following 5 subgroups were
found, ‘Sweetcrisp’ and ‘Rebel’ were all on the lower left quadrant of the
PCA which contained more quercetin-3-galactoside or glucoside
(subgroup 1); seven cultivars consisted of higher quercetin-3-
arabinoside and had high scores on negative PC1 (subgroup 2); seven
cultivars (subgroup 3), and ‘Snow chaser’, ‘Sapphire’ and ‘Windsor’
(subgroup 4) rich in chlorogenic acid had low positive scores on
PC1but separated more by PC2; while ‘Emerald’, ‘Climax’ and ‘Savory’
had high scores on the right quadrant of the PCA (subgroup 5).
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Figure 4: PCA bi-plot of 22 blueberry cultivars according to
phenolic compositions. (1) protocatechuic acid, (2) kaempferol, (3)
catechin, (4) myricetin, (5) caffeic acid, (6) quercetin, (7) ferulic
acid, (8) gallic acid, (9) epicatechin, (10) quercetin-3-arabinoside,
(11) quercetin-3-galactoside or glucoside, (12) chlorogenic acid.

PCA showed that the majority of the variation between the cultivars
was due to variation in quercetin-3-galactoside or glucoside,
quercetin-3-arabinoside and chlorogenic acid. The composition
differences of these compounds in certain cultivars may reflect the
importance of endogenous factors during the biosynthesis, such as
activities of UDP-glycosyltransferase involved in glycosylation of
flavonols [46] and caffeoyl-CoA in the formation of chlorogenic acid
[47]. Evidence has also shown that genotype impacts phenolic
composition [48], as does maturity [129]. Among the main phenolic
compounds, the distribution of chlorogenic acid, and quercetin
derivatives in 5 highbush blueberry (Vaccinium corymbosum L.)
Juices were dependent on cultivar [48]. This founding was in
agreement with our results showed in PCA.Reports in highbush
blueberry planted in Berlin-Dahlem (Germany) showed that flavonols
(mainly quercetin derivatives) and hydroxycinnamic acids (caffeic and
chlorogenic acid) varied and decreased during ripening stage [11]. This
maturity effect may also help to explain that the differences in phenolic
composition of different cultivars were related to quercetin-3-
galactoside or glucoside, quercetin-3-arabinoside and chlorogenic acid
in our study (Figure 4).

Dendrogram from clustering analysis also showed agreement with
PCA groups. Five significantly different (p<0.05) distinct clusters were
produced (Figure 5) (p<0.05) which correspond to the 5 clusters found
from PCA. Cluster 1 and cluster 2 contained 9 cultivars; all of these
cultivars except ‘Jewel’ had lower amount of phenolic acids and total
phenolics. Clusters 4 and 5 contained 13 cultivars which had greater
amounts of phenolic acids and total phenolics. Interestingly, the 22
blueberry cultivars were divided into the same number of subgroups
using both complete-linkage clustering analysis and PCA. The distance
between these groups were similar as well.

Figure 5: Dendrogram of 22 blueberry cultivars based on phenolic
composition using Complete- linkage clustering analysis by
Euclidean distance or its square for similarity relationships.

The groups found in PCA were very similar to those produced from
clustering, although some small differences were noted. Groups 1 and 2
in PCA contained similar cultivars with cluster 1and 5. Group 3 from
PCA corresponded to cluster 2. Cultivars in group 4 corresponded to
cluster 4 and cultivars in group 5 from PCA corresponded with cluster
3. The slight differences may be explained by which each phenolic
compound contribute different weight to the total phenolics profile
(Figure 3). Additionally the clustering does provide more groupings
than PCA should clustering move further down the dendrogram. A
maximum of 13 different clusters can be found in the cluster
dendrogram. The clusters that correspond with the PCA data occur at
a relative distance of 2. Therefore clustering analysis may provide more
detailed information than PCA and in the future may be used over
PCA.

This is the first report of the phenolic acid and flavonoid profiles of
Florida blueberry cultivars. The cultivars clearly differed based on
chemical composition resulting in five distinct subgroups. Beyond the
phenolic acid and flavonoid information these profiles are important
to blueberry growers and breeders looking to produce blueberries with
target phenolic composition. Particularly since Florida blueberries
dominate the fresh market for spring and early-summer blueberries.
Additionally clustering analysis provides more detailed information on
differences between blueberries in comparison to PCA.
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