Isolation of Hexadecanoic Acid Methyl Ester and 1,1,2-Ethanetricarboxylic Acid-1-Hydroxy-1,1-Dimethyl Ester from the Calyx of Green Hibiscus Sabdariffa (Linn).

Ajoku GA1, Okwute SK2* and Okogun JI2

1National Institute for Pharmaceutical Research and Development, P.M.B. 21, Idu-Abuja, Nigeria
2Department of Chemistry, University of Abuja, P.M.B. 117, Abuja, Nigeria
3Pax Herbal Clinic & Research Laboratories, Benedictine Monastery, P.O. Box 150, Ewu-Esan, Edo State, Nigeria

Abstract

The calyx of green Hibiscus sabdariffa is used in Nigeria to prepare soup, stew and sauces as distinct from the red variety which is used to produce a popular local drink known as sobo due to their health benefits. This work therefore aims to identify some of the chemical constituents of the green variety which has been scarcely investigated. Hexadecanoic acid methyl ester and 1,1,2-ethanetricarboxylic acid-1-hydroxy-1,1-dimethyl ester were isolated from the methanol extract of the calyx of the green Hibiscus sabdariffa using chromatographic methods, including Flash column chromatography and preparative thin layer chromatography. They were characterized using spectroscopic analysis and gas chromatography-mass spectral (GC-MS) analysis. This is the first report of the presence of hexadecanoic acid methyl ester and 1,1,2-ethanetricarboxylic acid-1-hydroxy-1,1-dimethyl ester in the calyx of the green variety of this plant. These compounds are probably associated with the antimicrobial and other bioactivities previously reported for the plant.

Keywords: Green Hibiscus sabdariffa; Calyx; Chemical constituents; Spectral characterization

Introduction

Hibiscus sabdariffa Linn is a shrub belonging to the family – Malvaceae. It is a popular vegetable in Indonesia, India, West Africa and many tropical regions [1]. The plant is widely grown in tropics like Caribbean, Central America, India, Africa, Brazil, Australia, Hawaii, Florida and Philippines as a home garden crop. The name “sabdariffa” originated from the Philippine Islands [2]. In addition to Roselle in English-speaking regions, it is called Roselle, Sorrel, Green sorrel, Jamaica sorrel, Indian sorrel, Guinea sorrel, Sour-sour, Queensland jelly plant, Jelly okra, lemon bush and Florida cranberry. In Nigeria, two botanical varieties are recognized; the calyces of the red variety are used for the preparation of sobo drink, while the calyces of the green variety are used to cook soup, stew and sauces. In Nigerian languages it is called Yakwua (Hausa) which refers to the whole plant, Amukan (Yoruba) and Okworro ozo (Ibo) [3]. The vegetable is also widely grown in the North-Eastern, Western and Middle Belt regions of Nigeria [4]. The calyx of green roselle is very rich in vitamin C and riboflavin with some major minerals present [5]. Roselle calyces are used as a digestive and purgative agent and a folk remedy for abscesses, bilious conditions, cough, dysuria, scurvy, stangury, cancer and hypertension [6]. Ethnobotanical survey revealed that a decoction of the leaves of the green roselle is used to treat bleeding gum in children, improve appetite of malnourished children and to increase breast milk in lactating mothers. The lipid content of the fermentation product of the vegetable is also widely reported due to their health benefits. This work therefore aims to identify some of the chemical constituents of the green variety which has been scarcely investigated. Hexadecanoic acid methyl ester and 1,1,2-ethanetricarboxylic acid-1-hydroxy-1,1-dimethyl ester were isolated from the methanol extract of the calyx of the green Hibiscus sabdariffa using chromatographic methods, including Flash column chromatography and preparative thin layer chromatography. They were characterized using spectroscopic analysis and gas chromatography-mass spectral (GC-MS) analysis. This is the first report of the presence of hexadecanoic acid methyl ester and 1,1,2-ethanetricarboxylic acid-1-hydroxy-1,1-dimethyl ester in the calyx of the green variety of this plant. These compounds are probably associated with the antimicrobial and other bioactivities previously reported for the plant.

Materials and Methods

General

The calyces of Hibiscus sabdariffa Linn (Green Roselle) were harvested from Omegede Otutubatu, Omala Local Government Area in Kogi State in the plain farmlands during the dry season on 25th November, 2005. The plant was identified at the National Institute for Pharmaceutical Research and Development (NIPRD), Idu-Abuja. A voucher specimen, number NIPRD/H/6150, was deposited at the Institute’s herbarium for future reference. The collected plant materials were thereafter air-dried in a shade for two weeks. The dried calyces were pulverized in a mortar using a pestle and kept in an air tight cellophane bag and preserved in the dark until required.

Analytical grade organic solvents including hexane, ethyl acetate, methanol, acetone (Sigma-Aldrich) were used in this study for extraction and chromatographic purifications. However, solvents or reagents used in highly sensitive equipment like NMR and GC-MS were as specified by the equipment’s manufacturers. Melting points (mp) were determined with a Barnstead Electrothermal BI 9100 melting point apparatus. 1H NMR and 13C NMR spectra were run on a Bruker AV 300(400 MHz) and 500 (500 MHz) spectrometers using CDCl3 and DMSO-d6 as solvents, and tetramethylsilane (TMS) as internal standard, at the University of Strathclyde Glasgow, and values were expressed in parts per million (δ). On the other hand, both 1H (400 MHz) and 13C (100 MHz) spectral data were recorded in deuterated CDCl3, DMSO-d6, D2O or CD3OD, on a Bruker AMX400 at Acorn NMR Inc, Carliñiá, USA and Columbia University, USA. NMR spectrometer chemical shifts were also expressed in ppm relative to TMS as internal standard.

*Sponsorship of this research by the National Institute for Pharmaceutical Research and Development, Idu-Abuja, Nigeria is gratefully acknowledged.

Received December 15, 2014; Accepted January 20, 2015; Published February 06, 2015

Citation: Ajoku GA, Okwute SK, Okogun JI (2015) Isolation of Hexadecanoic Acid Methyl Ester and 1,1,2-Ethanoctarboxylic Acid-1-Hydroxy-1,1-Dimethyl Ester from the Calyx of Green Hibiscus Sabdariffa (Linn.. Nat Prod Chem Res 3: 169. doi:10.4172/2329-6836.1000169

Copyright: © 2015 Ajoku GA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
TMS and the coupling constants (J) were given in Hz. Standard pulse sequences were employed for the measurement of 2D NMR spectrum (1H-1H COSY). The IR spectra were recorded with a Shimadzu Fourier Transformed Infra-red (FT-IR) spectrometer model 8400S at National Research Institute for Chemical Technology (NARICT) Zaria, Kaduna State, Nigeria. The values are in wavenumber (cm⁻¹). The GC-MS was done at Sheda Science and Technology Complex (SHESTCO), Kwali, Abuja, Nigeria. The flow rate was 1 ml/min and column temperature was 250°C. Open flash column chromatography was performed using silica gel Merck 0.063-0.200 mm mesh, 60G, for the fractionation of extracts. TLC analysis of extracts, fractions and compounds were carried out using silica 60 F₂₅₄ precoated glass baked plates (0.25 mm, 20 x 20 cm; Merck Darmstadt, Germany). Spots were detected on TLC plates under short (λ=254 nm) and long (λ=366 nm) UV light as well as visualized by spraying with 2% (w/v) vanillin in sulphuric acid and in iodine vapour.

Extraction, isolation and characterization

The pulverized dried calyces of green *Hibiscus sabdariffa* (5.0 kg) were macerated successively in n-hexane, ethyl acetate and methanol for 24 hours each at room temperature (25°C) according to standard procedures [9]. The extracts were filtered and the filtrates were concentrated under reduced pressure using a rotary evaporator at 46°C to give the crude extracts. The crude extracts were kept in sealed containers in the dark until required. The methanol extract (10 g) was fractionated using Flash column chromatography on silica gel (75 g) using mixtures of hexane and ethyl acetate. A viscous yellow oil GAA4 (330 mg; Rf = 0.77, 3:2 hexane/ethyl acetate) was obtained (75 g) using mixtures of hexane and ethyl acetate. Further elution with 20% hexane in ethyl acetate gave a precipitate. It was re-dissolved in ethylacetate over 60% hexane in ethyl acetate. Further elution with 20% hexane in ethylacetate gave a precipitate. It was re-dissolved in ethylacetate over warm bath and allowed to stand for 18 hours to give a white precipitate, GAA2 (314 mg, Rf value = 0.35, 3:2 hexane-ethylacetate) and was re-crystallized from ethyl acetate as white crystals (m.p., 127.0-127.4°C). The two isolates were then subjected to spectroscopic and GC-MS analyses.

Results and Discussion

The black creamy sticky solid methanol extract of the calyx of green *Hibiscus sabdariffa* was subjected to column chromatography to give the yellow oil, GAA4, and the white crystalline solid, GAA2. The gas chromatogram of GAA4, Figure 1, showed a prominent peak with a retention time of 12.19 minutes indicating that compound GAA4 was relatively pure. The 1H NMR spectrum allowed for a quick identification of GAA4 as a fatty acid ester based on a collection of signals between 2.5 and 0.87 ppm suggesting the presence of methyl and methylene groups (Table 1). A very important signal at 3.64(3H) was suggestive of the presence of the methoxy group of a methyl ester. In 13C NMR spectrum, 16 carbon signals were observed, including the ester carbonyl carbon signal at 174.62, which was also suggestive of a carboxylic acid ester (Table 1). In addition, the MS spectrum (Figure 2) showed the [M+H]+ ion at m/z 207 [M+H]+ and fragment ions at m/z 192[207 - CH₃] and 144[206-2CH₃]. Based on the above spectral characteristics and 1H-1H COSY spectral studies which confirmed the connectivities between the various protons, compound GAA2 was assigned structure 1, 1, 2-ethanetricarboxylic acid-1-hydroxy-1,1-dimethyl ester (scheme 2).

In addition, the mass spectrum (Figure 6) showed a mass ion peak at m/z 207 [M+H]+ and fragment ions at m/z 192[207 - CH₃] and 144[206-2CH₃]. Based on the above spectral characteristics and 1H-1H COSY spectral studies which confirmed the connectivities between the various protons, compound GAA2 was assigned structure 1, 1, 2-ethanetricarboxylic acid-1-hydroxy-1,1-dimethyl ester (scheme 2).
Scheme 2

Hexadecanoic acid (palmitic acid) had previously been isolated from the seeds of both *Hibiscus trionum* and *Hibiscus sabdariffa* (red roselle) [10-12]. This is perhaps the first time hexadecanoic acid methyl ester has been isolated from the calyx of *Hibiscus sabdariffa* (green roselle). Hexadecanoic acid methyl ester (palmitic acid methyl ester) had also been reported to cause autolysis of membranous structures, induce significant aortic dilation, inhibit phagocytic activity and nitric oxide production of certain cells, reduce levels of tumor necrosis factor-alpha (TNFα), prostaglandin E (PGE2), and interleukin-10 (IL-10) without affecting ATP levels [13-16]. While citric acid had previously been isolated from *H. sabdariffa* (red roselle) [13], this is the first report of 1,1,2-tricarboxylic acid-1-hydroxy-1,1-dimethyl ester, a related tricarboxylic acid derivative, from the genus, *Hibiscus*. The citrates are known to possess antifungal activity and their solutions as Tetraclean find uses as final rinse against *Candida albicans* in human tooth models [17].

Conclusion

The present study on the calyx of *H. sabdariffa* (green roselle) is important as the isolated compounds may be useful as markers for the Malvaceae family. The well known bioactivities of the isolated compounds may explain the traditional medicinal uses of the plant.

Figure 4: 1H NMR spectrum of compound GAA2

Figure 5: 13C NMR spectrum of compound GAA2

<table>
<thead>
<tr>
<th>1H</th>
<th>13C</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.83, s</td>
<td>53.0</td>
<td>OCH$_3$</td>
</tr>
<tr>
<td>3.94, s</td>
<td>54.6</td>
<td>OCH$_3$</td>
</tr>
<tr>
<td>CO$_2$R</td>
<td>-</td>
<td>171.5</td>
</tr>
<tr>
<td>CO$_2$R</td>
<td>-</td>
<td>171.6</td>
</tr>
<tr>
<td>C-OH</td>
<td>5.11, s</td>
<td>81.2</td>
</tr>
<tr>
<td>CH$_2$</td>
<td>2.97, d.d</td>
<td>40.3</td>
</tr>
<tr>
<td>CO$_2$H</td>
<td>>7.40</td>
<td>166.1</td>
</tr>
</tbody>
</table>

Table 2: NMR (CDCl$_3$) chemical shifts for compound GAA2

Acknowledgement

The authors are grateful to the taxonomist, Dr. (Mrs) Jemilat Ibrahim, who identified the plant and stored a herbarium specimen and to the ethnomontologist, Mr. Muuzaam Ibrahim Wudil, who gave the ethnomontological information on the plant, both of the National Institute for Pharmaceutical Research and Development (NIPRD), Idu, Abuja, Nigeria. They are also grateful to the Institute for pharmaceutical Research and Development, Idu, Abuja, Nigeria, for a study sponsorship granted G. A. Ajoku.

References