Abstract

Kallmann syndrome is a very rare hereditary disease. It is characterized by hypogonadotropic hypogonadism in association with anosmia or hyposmia, both of which occur as a result of impairment of olfactory axon development and failure of migration of gonadotropin-releasing hormone (GnRH) neurons. Mode of inheritance can be autosomal dominant, autosomal recessive, or X-linked. We report a case of Kallmann syndrome in an 18 year old girl who presented with primary amenorrhoea, poor sexual development with poor sense of smell and colour blindness. Plasma levels of LH, FSH and oestradiol were very low. The patient's other pituitary hormone levels were normal. Chromosome analysis showed 46, XX karyotype. USG of lower abdomen confirmed absence of uterus and ovaries. MRI of brain showed olfactory bulbs to be present and there was no pituitary or hypothalamic lesion. We present this case for its very rare occurrence in the eastern part of the world and the typical feature being normal MRI brain with functional defect of the olfactory pathway. Treatment was started with cyclic conjugated oestrogen and progestin. Our patient is now on regular follow-up to monitor response to treatment.

Keywords: Kallmann syndrome; Primary amenorrhoea; Anosmia

Introduction

Kallmann Syndrome (KS) is a form of hypogonadotropic hypogonadism characterized by delayed or absent puberty and an impaired sense of smell [1-5]. It is a rare genetic condition affecting 1 in 10,000 males 1 in 50,000 females [2,4]. Either anosmia or severe hyposmia is present in these patients and this feature distinguishes Kallmann syndrome from most other forms of hypogonadotropic hypogonadism [1,4,6,7]. The condition usually presents around puberty with impaired pubertal changes. Timely diagnosis and management can be highly beneficial for the affected persons. One such case is described hereby.

Case Report

An 18 year old unmarried girl, Honours student, from a middle class family, presented at our patient department of OBGYN unit of BIRDEM hospital, Dhaka, Bangladesh in January 2014, with history of primary amenorrhoea, poor sexual development, poor sense of smell and color blindness. She gave no history of extreme dieting, sudden weight loss or weight gain, bulimia or rigorous exercise. She was not on any medication.

An USG of lower abdomen was done which confirmed presence of uterus and ovaries. She had progesterone challenge test (Tab. Norethisterone acetate 5 mg TDS for 7 days) to bring on menstruation but did not respond. She had no history of any major medical or surgical illness in the past. Her paternal aunt had suffered from primary amenorrhoea. USG and IBU showed no abnormalities regarding kidney, renal pelvis and lower urinary tract in both sides.

On general examination her height was 154 cm and all her vital parameters were within normal limit. Her breast development was poor (Tanner stage II) with no evidence of galactorrhoea. Her breast development, pubic hair (Tanner stage II), prominent labia minora, flat labia majora and intact hymen. Full endocrine evaluation was done which revealed normal female pattern (46 XX). MRI of brain showed olfactory bulbs were present and there was no pituitary or hypothalamic lesion. The olfactory sulci and bulbs were assessed as normal. Olfactory tests were done through the smell test by giving different smells near nostril. Sulci were assessed as normal in comparison to rest of cerebral sulci). So she was diagnosed as a case of primary amenorrhoea due to Kallmann’S Syndrome (KS). We didn’t perform any genetic testing, for the genes known to be involved in GnRH migration through the olfactory bulb. Kallmann syndrome was an anomaly of neuronal migration. Cells that differentiate into Gonadotrophin releasing hormone (GnRH) secreting neurons originate from within embryonic olfactory epithelium and migrate along fascicles of vomeronasal and terminalis nerves into forebrain. This migration of GnRH neurons was arrested in KS resulting in GnRH deficiency (<5 ng/ml) followed by different degrees of luteinizing hormone (LH) and follicle stimulating hormone (FSH) deficiencies. Abnormal development of olfactory placode also resulted in improper development of olfactory bulbs and sulci. Other associated anomalies including various cardiovascular abnormalities, renal agenesis, cryptorchidism, short fourth metacarpal and facial anomalies had been reported in-patients with KS. In our patient, no anomalies were noted.

The patient and her parents were duly counseled regarding her diagnosis, treatment and prognosis. Treatment was started with conjugated oestrogen (Tab. Premarin 2.5 mg daily for 28 days) and progestin (Tab. Medroxy progesterone acetate 5 mg for last 12 days of cycle).

Growth hormone was assessed by growth hormone stimulation tests in order to exclude GH deficiency. Also, the ACTH and cortisol of this case was detected as a similar reason.

*Corresponding author: Dr. Samsad Jahan, Consultant and Associate Professor, Department of Gynecology and Obstetrics, BIRDEM, Dhaka, 122 Kaz Nazrul Islam Avenue, Dhaka-1000, Bangladesh, Tel: 880 2 8666641-50/ext-2270; Fax: 880-2-9677772; E-mail: shelly_birdem@yahoo.com; dhcdp@dab-bd.org; samirahumaira@yahoo.com

Received May 30, 2014; Accepted September 22, 2014; Published September 26, 2014

Citation: Jahan S, Sherin S, Habib SH, Nayer R (2014) Kallmann’s Syndrome: A Rare Cause of Primary Amenorrhoea. Gynecol Obstet (Sunnyvale): 4: 250. doi:10.4172/2161-0932.1000250

Copyright: © 2014 Jahan S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
She is now under regular follow up with monitoring of hormone levels and sexual development.

She didn’t have any family history of her own mother or siblings or maternal and paternal aunt regarding anosmia and hyposmia. The age of mother’s menarche was at 10 years of age.

Discussion

The association of hypogonadism and anosmia was first described by Maestre de San Juan, a Spanish anatomist, in 1856. Later in 1944, a German-American geneticist, Franz Joseph Kallmann, recognized the genetic basis of this condition in three families, and thereafter this association has been known as Kallmann syndrome [8]. KS accounts for nearly two thirds of individuals with isolated GnRH deficiency (IGD). Apart from the sense of smell there is no difference in the diagnosis or treatment of a case of IGD or a case of Kallmann syndrome [1,9].

The molecular pathogenesis of KS is complex but mainly referable to the impairment of olfactory axon development and of the migration of gonadotropin-releasing hormone (GnRH) neurons. Mutations in the genes KAL1, FGFR1, PROKR2, PROK2, CHD7, and FGF9 reportedly cause Kallmann syndrome [12,14,10–14]. The genetics of Kallmann syndrome and other forms of hypogonadotropic hypogonadism is still far from clear with around 70% of cases having an unknown genetic origin [15].

Kallmann syndrome is a genetically heterogeneous disorder. Approximately one third cases are inherited. The remaining two thirds are sporadic and may represent new mutations. Three different patterns of inheritance have been described-autosomal dominant (64%), autosomal recessive (25%), or X-linked (11%) [1,4,16]. Of 59 Kallmann syndrome patients analyzed by Oliveira et al. [21] were familial and 38 were sporadic cases [17]. Tagatz et al. described 3 unrelated females with hypogonadotropic hypogonadism and anosmia [18]. No relative was affected and the parents in each case were unrelated. Sato et al. studied 3 female Japanese individuals with Kallmann syndrome who were apparently sporadic cases [14]. In this case the patient had a paternal aunt who suffered from hypogonadotropic hypogonadism and anosmia. Gasztonyi et al. reported a case where the maternal aunt of the affected female had anosmia, making autosomal dominant inheritance likely [19]. Levy and Knudtson also reported a family in which 2 sisters, aged 13 and 19 years, had hypogonadotropic hypogonadism and anosmia [20].

Most individuals with KS are identified at puberty usually due to incomplete development of secondary sexual characteristics. However, the degree to which sexual maturation is affected can vary [1]. Women with KS typically have Tanner stage I breast development and amenorrhea and have Tanner stage III PUBIC hair, but milder presentations with spontaneous menses are recognized [1,21]. Our patient presented at 18 years of age with primary amenorrhea with breast development and pubic hair both at Tanner stage II. The patient reported by Persson et al. presented at 16 years and 11 months of age, never having menstruated and with no evidence of breast development or any other sign of spontaneous puberty [22].

Because of the failure of growth plates in the bone to fuse in the absence of sex hormones, most individuals with KS have a eunuchoid body habitus (i.e., arm span exceeds height by ≥ 5 cm). Whereas skeletal maturation is delayed, the rate of linear growth is usually normal with absence of a distinct pubertal growth spurt [23].

The impaired olfactory function in Kallmann syndrome can be either hyposmia or complete anosmia [24]. Most individuals with impaired smell do not have any physical or social impairment and the finding often goes unnoticed until KS is diagnosed [1,4]. Our patient had complete anosmia like that of Persson et al. [22]. In a series of 6 patients reported in Jordan 4 had anosmia and 2 had hyposmia [25]. Additional frequently observed features of KS include both neurological (i.e. synkinesia, and hearing loss) and nonneurological (i.e. renal aplasia and midline craniofacial abnormalities) phenotypes [26–30]. Some patients may also present with color blindness, congenital heart disease and later on with osteoporosis [4]. Franz Kallmann himself reported color blindness in these patients in the pioneer series [31].

The diagnosis is often one of exclusion found during the workup of delayed puberty. For both males and females with constitutional delay of puberty, endogenous puberty will eventually commence without treatment. However a delay in treatment in a case of KS/IGD will delay the physical development of the patient and can cause severe psychological damage. The “wait and see” approach of being a “late bloomer” is probably counterproductive to the needs of the patient whereas a step by step approach with hormone replacement therapy can be used as a diagnostic tool. In females diagnosis is sometimes further delayed as other causes of amenorrhea normally have to be investigated first before a case of KS/IGD is considered [32].

Laboratory studies show inappropriately low or normal serum concentration of LH (luteinizing hormone) and FSH (follicle stimulating hormone) in the presence of low circulating concentrations of oestradiol in females. Levels of other anterior pituitary hormones (i.e. prolactin, TSH) and thyroid hormones are typically normal [1,4]. The LH, FSH and oestrogen levels of this patient were 1.5 IU/L, 3 IU/L and 40 pg/ml respectively. In another case report basal LH concentration was <1 IU/L and basal FSH level was at 0.8 IU/L. The anterior pituitary reserve was otherwise normal on dynamic testing [22]. Hormone levels of the patients reported by Abu Jbara et al. showed basal LH and FSH levels of 0.5–0.8 IU/L and 1.2–2.6 IU/L and oestradiol level was 5–15 pg/ml [25].

Imaging studies MRI of brain may reveal abnormal olfactory systems, including complete agenesis of olfactory bulbs and sulci or shallow olfactory sulci in about 75% patients [1,4]. This patient had intact olfactory bulbs on MRI. Several case reports are available for male patients with Kallmann syndrome with olfactory bulb abnormality as it is five times commoner in male [33–35]. Whereas only one case of a female adolescent with KS presented by Novo et al. was found who had hypoplasia of the nasal sulcus and agenesis of the olfactory bulbs [36]. The case reported by Persson et al. had no abnormality of the pituitary, upper thalamus or olfactory pathway [22].

Assessment for presence of possible non-reproductive features includes renal ultrasound examination (to detect unilateral renal agenesis), hearing tests (to detect sensorineural hearing loss), skeletal survey (to detect limb/spine bony abnormalities), dental exam (to detect dental agenesis), eye exam (to detect iritis and/or chorioretinal coloboma), Ishihara chart testing (for colour blindness), echocardiogram (to detect congenital heart disease) and developmental assessment (if there is evidence of developmental delay). In addition potential deterioration in bone health that may have resulted from periods of low-circulating sex hormones needs to be addressed. To assess osteoporosis bone densitometry is done by dual-energy radiographic absorptiometry (DXA) [1,4].

Other tests include progesterone challenge test either with progesterin or with combined oestrogen-progesterin. Women with a profound lack of oestrogen are unlikely to respond to progesterin alone. Lack of withdrawal bleeding even with combined oestrogen-progesterin...
striking about a person with Kallmann syndrome. They will not look
Kallmann syndrome on the whole are those that are diagnosed before
syndrome can have a profound effect on a person's life. Not going
some individuals.

For treatment behavioral modification and psychological
counseling of the patient and her family is of utmost importance [4].
Treatment for KS and other forms of HH can be split into two different
categories—hormone replacement therapy and fertility treatments
[43,44].

Hormone replacement therapy for females not desiring fertility—
although a definitive diagnosis of KS in females is usually made around
age 18 years, occasionally, a high clinical suspicion may be present in an
adolescent presenting with anosmia and delayed puberty and therapy
may need to be initiated earlier (age ~14 years). To allow optimal breast
development, initial treatment should consist of unopposed estrogen
replacement via oral or topical preparations (Tab. Premarin 0.3 mg
daily to be increased gradually to an adult replacement dose of 1-1.25
mg daily). Once breast development is optimal, a progesteron should be
added for endometrial protection (cyclical progesterin daily for 10-12
days) [1].

Hormone replacement therapy for females desiring fertility—to
stimulate folliculogenesis, either combined gonadotropin therapy
(hCG and human menopausal gonadotropins [hMG] or recombinant
FSH [rFSH]) or pulsatile GnRH therapy may be given. If conception
fails, in vitro fertilization (IVF) may be an option [1].

Optimal calcium and vitamin D intake should be encouraged and
specific treatment for decreased bone mass with bisphosphonates
should be considered depending on the degree of bone mineralization
for prevention of osteoporosis [1].

Patient education is an integral part of management of KS. These
patients can survive for lengthy periods in the absence of associated life-
threatening conditions. They must be aware of the risks and benefits
of gonadal steroid replacement therapy and fertility treatments
[44].

From patient’s perspective we must realize that having Kallmann
syndrome can have a profound effect on a person’s life. Not going
through puberty at the normal age can produce a huge effect on a
person’s social development as well as physical development [45].

Age of diagnosis and treatment is a big key to how well an individual
patient copes with the condition. The patients that cope better with
Kallmann syndrome on the whole are those that are diagnosed before
the age of 16 and have prompt treatment. Outwardly there is nothing
striking about a person with Kallmann syndrome. They will not look
any different from anybody else. Once treatment is started and normal
hormone levels are restored there are no side effects or life expectancy
issues associated with having Kallmann syndrome.

Morphological abnormalities of olfactory apparatus in KS are
best evaluated with MRI. Suzuki et al was the first to describe the
visualization of olfactory bulbs and tracts on MR scans [46]. Olfactory
bulbs are optimally visualized in coronal planes. Olfactory bulbs are
seen as well-defined structures along cribiform plate. Olfactory
sulci are seen between Gyrus rectus and medial orbital gyrus. High
resolutions coronal fast spin echo T2W and T1W images are the
preferred sequences for morphologic evaluation of the olfactory
system [47-49]. Reported abnormalities include hypoplastic/aplastic
olfactory sulci and olfactory bulb [50-52]. In our study, all patients had
abnormalities involving olfactory sulci and olfactory bulb. In addition,
two patients had hypoplastic anterior pituitary gland. Hypoplasia of
anterior pituitary may be secondary to limited stimulation due to
absence of hypothalamic GnRH neurons. Same findings we found in
our patient.

Thus, it is necessary to diagnose Kallmann’s syndrome at
appropriate time, as timely replacement can restore secondary sex
characteristics and fertility. In this way, patient and his or her family can be
saved from a lot of psychosocial problems.

References

1. Buck C, Balasubramanian R, Crowley WF (2007) Isolated gonadotropin-
releasing hormone (GnRH) deficiency. Gene Reviews.
mutations account for variable phenotypes in idiopathic hypogonadotropichy
pogonadism. Medscape.
report of the first case with a KAL1 mutation and literature review. Eur J
Endocrinol 156: 285-290.
pogonadism effect on bone mineral density and bone turnover. J Clin Endocrinol
Metab 8: 655-665.
fraction modifications in FGFR1 cause autosomal dominant Kallmann syndrome.
11. Dick B, Ballabio A (1990) Chromosome abnormalities in and pathogenesis of
with ichthyosis, Kallmann syndrome, chondrodysplasia punctata, and an Xp
terminal part of the short arm of the human X chromosome. Proc Natl Acad Sci
U S A 87: 3680-3684.
assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and
fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18
Abstracts.
Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome
and normosmic idiopathic hypogonadotropichy pogonadism. Proc Natl Acad Sci USA 103: 6281-6286.


