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Killing Orbits and Isotropy in General Relativity
Graham Hall*

Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

This brief note is intended to show how a global and rigorous 
approach to certain problems regarding symmetry in general relativity 
theory may be given using the theory of Killing orbits and isotropy. 
Examples from cosmology and plane wave theory are chosen to 
illustrate the method. More details on these examples may be found in 
[1] and on the general techniques used in [2,3].

Let (M, g) be a space-time and let K(M) denote the Lie algebra
(under the usual Lie bracket of vector fields) of all global, Killing 
vector fields on M. Thus ( ) 0XX K M L g∈ ⇔ =  where L denotes the 
Lie derivative. In any coordinate domain of M any ( )X K M∈  satisfies 
Xa;b=Fab=-Fba where a semi-colon denotes a covariant derivative and F is 
the Killing bivector associated with X. If TmM denotes the tangent space 
to M at m let f: K(M) → TmM denote the linear map X→X(m) with range 
space { ( ) : ( )}mD X m X K M≡ ∈  and kernel { ( ) : ( ) 0}mI K M X m≡ =   Thus 
dimK(M)=dimDm+dimIm.Im is a subalgebra of K(M) called the isotropy 
subalgebra and the map D: m→Dm is a generalised distribution on M 
(that is, it is not necessarily a Frobenius distribution since dimDm may 
not be constant on M). Since any ( )X K M∈  is uniquely determined by 
the values X(m) and F(m) at any m M∈ , it follows that dimK(M) ≤ 10 
and that any mX I∈  is uniquely determined by its associated F(m). It 
may then be checked that Im is Lie isomorphic to {F(m): F the Killing 
bivector of some mX I∈ } under the map X → F(m), the latter subalgebra 
under the Lie product of matrix commutation. It then follows that Im is 
Lie isomorphic to a subalgebra of the Lorentz algebra L of the Lorentz 
group and a classification of such subalgebras is well known [4].

Each ( )X K M∈  gives rise to a collection of local flow diffeomorphisms 
dt which are local diffeomorphisms of M and which essentially move 
each point of some open subset of M a parameter distance t, for t in 
some open interval of R, along the integral curves of X. For m M∈  the 
subset Om of points of M to which m may be mapped under successive 
applications of the permissible dt arising from K(M) is called the 
orbit (through m) associated with K(M). Such subsets are connected 
submanifolds of M and are integral manifolds of the distribution D, 
The nature of an orbit (null, spacelike or timelike) is the same at all its 
points. Then dimDm=dimOm and so dimK(M)=dimOm+dimIm for each 
m M∈ . If   ( )X K M∈ and X(m)=0, m is a zero of X and also a fixed 
point of any dt arising from X, dt(m)=m. Then the linear (pushforward) 
map dt* “reflects” the symmetry from X in the tangent space TmM and 
the other tensor spaces at m. 

The dimensions of K(M) and the orbits associated with K(M) 
can be related in the following way. First an orbit O of K(M) is called 
dimensionally stable if whenever  m O∈  there exists a neighbourhood 
U of m such that the dimension of any orbit through any point of U 
has the same dimension as O. The following can then be shown. (a) 
If K(M) admits a 3-dimensional null orbit, 3 ≤ dimK(M) ≤ 7, whilst 
if K(M) admits any dimensionally stable, 3-dimensional null orbit 
or any 3-dimensional, non-null orbit (the latter being necessarily 
dimensionally stable), 3 ≤ dimK(M) ≤ 6. (b) If K(M) admits a 
2-dimensional, null (respectively a 2-dimensional non-null) orbit, 2 ≤
dimK(M) ≤ 5, (respectively, 2 ≤ dimK(M) ≤ 4), whilst if K(M) admits
any 2-dimensional, dimensionally stable orbit, 2 ≤ dimK(M) ≤ 3. (c)
If K(M) admits a 1-dimensional, null (respectively a 1-dimensional

non-null) orbit, 1 ≤ dimK(M) ≤ 5, (respectively, 1 dimK(M) ≤ 4), 
whilst if K(M) admits any 1-dimensional, dimensionally stable orbit, 
dimK(M)=1. These results, together with the above theory, may be 
used to give a global approach to some problems with high symmetry 
and from which the usual results, often obtained by somewhat ad hoc 
methods, may be derived. Two examples drawn from cosmology and 
plane wave theory are used to clarify the ideas. 

First, consider cosmological models. The concept of isotropy (“all 
directions are equivalent”) only makes sense if one takes it to mean 
that all incoming null directions (of photons from observations) are, 
in some sense, “equivalent”. So call a space-time cosmological if, for 
each m M∈ , the collection of linear maps dt* arising from members 
of Im act transitively on the set of null directions at m. This imposes 
a restriction on the Lie algebra Im and, following a check on the 
collection of possible subalgebras of L, it turns out that Im can only be 
Lie isomorphic to o(3) (subalgebra R13 in [4]) or L itself (subalgebra 
R15). However, using the theory of the previous paragraphs, it can be 
shown that one necessarily has the global results that either Im ≈ o(3) 
at every m M∈  or Im ≈ L at every m M∈ . Using the results on the 
relationship between dimK(M) and orbit dimension, one then finds 
that any orbit of K(M) has dimension 3 or 4 and (M, g) consists of either 
a single 4-dimensional orbit or each of its orbits is 3-dimensional and 
spacelike. All orbits are dimensionally stable. Further one easily shows 
that either (i) Im is isomorphic to L for each m M∈ , in which case, (M, 
g) has constant curvature and dimK(M)=10 with K(M) having a single
4-dimensional orbit, or, (ii) Im is isomorphic to so(3) at each m M∈
and K(M) has a single 4-dimensional orbit. In this case dimK(M)=7, or,
(iii) Im is isomorphic to o(3) for each m M∈  and each orbit of K(M) is
3-dimensional and spacelike. In this case dimK(M)=6. If case (i) holds,
(M, g) is of constant curvature and hence is locally de Sitter, anti-de
Sitter, or Minkowski space whilst if case (ii) holds, (M, g) is either of
constant curvature or locally of the Einstein static type. If case (iii) holds,
(M, g) admits an open dense subset V such that each m ∈ V admits a
neighbourhood whose restricted metric is either of constant curvature
or of the (generic) FRWL type. [It is noted that there is no contradiction
if (M, g) is of constant curvature and dimK(M)<10; however the local
Killing algebra will be 10-dimensional, (see e.g. p 337.) The smoothness
of the relevant geometrical objects on M follows from the smoothness
of g and the members of K(M). One thus achieves a description of all
possible models satisfying the above cosmological condition. When
Im ≈ 0(3) a unique timelike direction at m is determined and which is
preserved by each dt* (the “cosmological observer”).

The assumption that (M, g) is cosmological also forces 
“homogeneity” onto (M, g) in the sense that either there exists a 
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4-dimensional orbit (transitivity) or the orbits are 3-dimensional and 
give a local cosmic time function (and in (ii), although the Killing orbit is 
4-dimensional, a 6-dimensional subalgebra of K(M) may be shown to exist 
whose 3-dimensional integral manifolds give a local cosmic time function). 

One may also apply this method to a study of plane wave symmetry. 
Let (M, g) be a space-time and let l be a null direction at m M∈ . A 
wave surface of l at m is a spacelike, 2-dimensional subspace of TmM 
orthogonal to l. If l, n, x, y is a null tetrad at m, the wave surfaces 
of l at m can be represented in a one-to-one way (by the pair (a, b) 
with a, b R∈ ) by those subspaces spanned by vectors of the form 
x+al and y+bl. Each unit timelike vector u at m determines a unique 
wave surface of l at m which is orthogonal to u (and l) and is then the 
instantaneous wave surface of l at m for the observer with 4-velocity u 
at m. Suppose one attempts to propose a definition of a plane wave (M, 
g) by insisting that the Killing algebra K(M) of (M, g) is such that for
each  m M∈ , there is a unique null direction ml T M∈  such that the dt*
arising from members of Im are transitive on the set of wave surfaces
of l at m. One can again check the subalgebras of L for candidates for
Im. The situation is a little more complicated now and it turns out that
five subalgebras of L are possible and which have dimension 2 or 3.
However, in all cases, the maps dt* fix the direction of l at m and it
can be shown that this is the only direction that they fix. Then, as in
the cosmological case, one can achieve a global description of all such

models. In fact, if one further restricts by the assumptions that all orbits 
of K(M) are dimensionally stable and that no non-empty open subsets 
of M of constant curvature exist then one gets the results that either Im
is 2-dimensional at each  with dimK(M)=5 (respectively, dimK(M)=6) 
and all orbits are 3-dimensional and null (respectively, there exists a 
single 4-dimensional orbit), or Im is 3-dimensional at each m M∈  with 
dimK(M)=6 (respectively, dimK(M)=7) and all orbits are 3-dimensional 
and null (respectively, there exists a single 4-dimensional orbit). These 
solutions can then be shown to give the usual (Petrov type N or O) 
plane wave metrics including, of course, the homogeneous ones and the 
one with non-zero cosmological constant given in [5,6].
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