Reach Us +44-1753390542
Kinetic and Equilibrium Studies for Dual Functional Adsorbent with Amino Group Magnetite | OMICS International
E-ISSN: 2252-5211
International Journal of Waste Resources
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Kinetic and Equilibrium Studies for Dual Functional Adsorbent with Amino Group Magnetite

Chyow-San Chiou1 and Hua-Wei Chen2*

1Department of Environmental Engineering, NationalI-LanUniversity, I-Lan, Taiwan, China

2Department of Cosmetic Application and Management, St. Mary's Junior College of Medicine, Nursing and Management, Yi-Lan, Taiwan, China

*Corresponding Author:
Chen HW
Department of Cosmetic Application and Management
St. Mary's Junior College of Medicine
Nursing and Management, Yi-Lan
Taiwan, China
Tel: +886939910932
E-mail: [email protected]

Received date February 16, 2016; Accepted date August 08, 2016; Published date August 15, 2016

Citation: Chiou CS, Chen HW (2016) Kinetic and Equilibrium Studies for Dual Functional Adsorbent with Amino Group Magnetite. Int J Waste Resour 6:242. doi:10.4172/2252-5211.1000242

Copyright: © 2016 Chiou CS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at International Journal of Waste Resources


A dual functional adsorbent (EDA/MMA/OA/Fe3O4) with amino group magnetite has been synthesized to behave as an anionic or cationic adsorbent (for the adsorption of phosphate or copper) by adjusting the pH value to make amino group protonic or neutral. The adsorptions of phosphate and copper ions by the dual functional adsorbent were investigated using kinetic, equilibrium, thermodynamic, and surface characteristic experiments. The adsorption behaviors for both copper ions and phosphate by EDA/MMA/OA/Fe3O4 were in good agreement with the Langmuir adsorption isotherm with the maximum adsorption capacities of 7.096 for the copper ion and 34.5071 mg g−1 for phosphate, respectively. The optimum conditions for the desorption of copper ions and phosphate were 0.1M HNO3 and 0.05 M NaOH, respectively. After three cycles, the adsorption capacity of the recycled EDAMMA/OA/Fe3O4 for copper ions and phosphate exhibited a loss of about 17.1% and 28.1%, respectively.


Adsorb; Copper ions; Magnetic; Adsorbent; Phosphate


Pharmaceuticals and personal care products (PPCPs) are a class of emerging contaminants which include commonly used medicinal, cosmetic and personal hygiene products [1]. Great concern has been raised about PPCPs due to their potential adverse impacts on ecological safety and human health [2]. Among the contaminants of PPCPs, cosmetic wastewater is the main contributor due to its large quantities. The main components of wastewater from a cosmetic manufacturing facility before further treatments include the surfactants, heavy metals, cations, and anions [3]. In this study, trace concentrations of copper and total concentrations of phosphorous were 16.8 μg L−1 and 4.89 mg PL−1, respectively.

Removing copper ions from wastewater is an important treatment procedure as copper is a highly toxic heavy metal since it causes stomach and intestinal distress, liver and kidney damage, and anemia [4,5]. Traditional metal ion treatment processes include chemical precipitation, ion exchange, electrolysis, reverse osmosis, adsorption, etc. [5,6]. Besides, excess phosphate in rivers can lead to significant eutrophication and water quality problems, including harmful algal blooms, as well as depletion of dissolved oxygen, which subsequently results in the decline of aquatic life [7]. In order to reduce or reuse the amount of phosphate in water, several techniques have been developed to remove phosphate from aqueous media, such as chemical precipitation, biological treatment, and adsorption [8,9]. Among these treatment methods, adsorption has been considered one of the most suitable and effective methods for the removal of both copper ions and phosphate [9-11].

The application of magnetic adsorbent technology to solve environmental problems has received considerable attention in recent years. Magnetic adsorbents (various magnetic particles, Fe2O3 and Fe3O4) can be used to adsorb contaminants from aqueous or gaseous effluents [12,13]. After the adsorption is carried out, the adsorbent can be separated from the medium by a simple magnetic process [14,15]. These adsorbents have a variety of surface functional groups which can be tailored for use in specific applications. Poly (2-hydroxyethylmethacrylate), poly(oxy-2,6-dimethyl-1,4-phenylene), polyvinyl-butyral, and chitosan are typical adsorbents which are used in different applications [15-17].

The objective of this study was to investigate the removal of both phosphates and copper ions from aqueous solutions using amino group magnetite. Kinetic, equilibrium, and characteristic experiments were performed to characterize the phosphate and copper ions of the amino group magnetite. Sorption kinetic and equilibrium isotherm models were used for data analysis. This will open up a potential broad application in cosmetic wastewater treatment (Table 1).

Materials and Methods

Adsorption and desorption

In adsorption experiments, the adsorbent concentration was controlled at 0.5 g in a 50 mL solution, and the equilibrium time was considered as 24 h [18]. Effects of the pH (2.0-6.0), kinetic experiments (0~90 min), adsorption isotherm (initial phosphate concentration 400~800 mg L-1 and initial copper ion concentration 50~150 mg L-1), and thermodynamic studies (283~313 K) on adsorption were studied. The pH value of the solution was controlled by adding 0.1 N HNO3/ NaOH.

Magnetic catalyst Surface area (m2 g-1) Treatments Adsorption (mg g-1)
1st cycle 2nd cycle 3rd cycle
EDA/MMA/OA/Fe3O4 34.99 Phosphate 11.71 9.70 8.42
Copper ion 5.97 5.23 4.95
Fe3O4 18.06 - - - -

Table 1: The Brunauer-Emmett-Teller surface area and reuse performance of Fe3O4 and EDA/MMA/OA/Fe3O4.

Desorption experiments were carried out with HNO3/HCl solutions in the concentration range of 0.001~1 M. A 0.5 g amount of the EDA/ MMA/OA/Fe3O4 adsorbent adsorbed with copper ion/phosphate was placed into 50 mL of an HNO3/HCl solution with thermostatic shaking for a time period of up to 24 h. The desorption efficiency (DE) was determined from the following equation (Equation (1)):

image      (1)

where C (mg L-1) is the concentration of copper ions or phosphate in the desorption solution, V is the volume of the desorption solution, q (mg g-1) is the amount of copper ion/phosphate adsorbed on the adsorbents before the desorption experiment, and m (g) is the amount of the adsorbent used in the desorption experiments.

Synthesis and instruments

The preparation methods of the dual functional adsorbent (EDA/ MMA/OA/Fe3O4) follow up our previously study [19]. The magnetic polymer particles (MMA/OA/Fe3O4) were prepared by using methyl methacrylate (MMA) as the functional monomer, ethylene glycol dimethacrylate (EDGMA) as the cross-linking agent, polyvinyl pyrrolidone (PVP) as the stabilizer, 2,2-azodiisobutyronitrile (AIBN) as the radical initiator and ethanol as the solvent. As shown in Figure 1, MMA/OA/Fe3O4 modified with amino group (EDA/MMA/OA/Fe3O4) was prepared by using ethylenediamine (EDA) and acetonitrile as a solvent and separated by an external magnetic field.

The concentrations of copper ions were determined by standard spectrophotometric methods using a polarized Zeeman atomic absorption spectrophotometer (Z-2000, Hitachi, Japan). The concentration of phosphate was determined using standard methods [20] using a spectrophotometer (Lambda 25, Perkin Elmer, USA).

Results and Discussion

Point of zero charge (PZC) analysis

PZC analysis can estimate the adsorption behavior of materials at a certain pH and provide reliable evidence of the mechanism of adsorption of copper ion or phosphate onto the adsorbent. As can be seen in Figure 2, the PZC results for Fe3O4, SiO2/Fe3O4, MMA/OA/Fe3O4 and EDA/MMA/OA/Fe3O4 were 7.0, 6.2, 6.0 and 8.1, respectively, and these results were similar to results [21].

Effect of pH on adsorption of copper ion and phosphate ion

The performance of the EDA/MMA/OA/Fe3O4 adsorbent in adsorbing copper and phosphate ions in solutions with different pH values is shown in Fig. 3. Experimental conditions included initial concentrations of copper ion = 100 mg L-1 and phosphate ion = 500 mg L-1, EDA/MMA/OA/Fe3O4 = 10 g L-1, reaction time = 24 h, and temperature (T) = 298 K. The results revealed that the adsorption behavior of EDA/MMA/OA/Fe3O4 with copper ions and phosphate ions is strongly pH-dependent.


Figure 1:Preparation and molecule structure of EDA/MMA/OA/Fe3O4.


Figure 2:Effect of pH values on zeta potential of Fe3O4, SiO2/Fe3O4, MMA/OA/Fe3O4 and EDA/MMA/OA/Fe3O4.

The amino groups (-NH2) of EDA/MMA/OA/Fe3O4 are or are not protonated (NH3+), depending on the pH values of the solution. The amine forms of NH3+ and NH2 will attract anions [22] and cations [23], respectively. In a solution with pH 3, the adsorption efficiency of Cu2+ by EDA/MMA/OA/Fe3O4 was nearly zero, but for phosphate ions it was relatively higher (22.1%). In solutions with low pH values, a relatively high concentration of protons would strongly compete with the copper ions for amine sites, so that the adsorption of copper ions was significantly decreased.

Furthermore, the protonation of the amino groups led to strong electrostatic repulsion of the copper ions to be adsorbed. As a result, it became difficult for the copper ions to come into close contact with the adsorbent surface and be adsorbed onto it; this resulted in poor adsorption performance for copper ions in a solution with pH ≤ 3. On the other hand, the protonated amines possess a strong electrostatic attraction to phosphate ions, which leads to a high adsorption capacity. Thus, the phosphate ion adsorption increased with the decrease in pH value because the dominant phosphate forms in the solution are H3PO4 and H2PO4 -. The solution’s pH value determines whether the amino groups on the synthetic magnetic adsorbent are protonated [24]. Protonated amino groups can adsorb phosphate anions. Lower solution pH values make EDA/MMA/OA/Fe3O4 more protonated, thus, attracting more phosphate anions.

As a result, the optimum pH values for phosphate ion adsorption were found to be in the pH range from 2 to 3, and all further adsorption experiments were carried out with a solution pH of 3 for PO43- due to the consideration of actual engineering application and the overdose of acid.

At higher solution pH values from 4 to 6 (lower proton concentrations), regarding copper ions, the competition between protons and copper ions for the amino groups became less significant, and more of the amino groups existed in their neutral form, which reduced the electrostatic repulsion of the copper ions. Furthermore, the unpaired electrons of the amino groups could create coordinate bonds with the copper ions. More copper ions could thus be adsorbed onto the surfaces of EDA/MMA/OA/Fe3O4, resulting in an observed increase in Cu2+ adsorption on the adsorbent. With regard to phosphate ions, in solutions with a higher pH, fewer protons are available to protonate the amino groups (–NH2) of EDA/MMA/OA/Fe3O4 to form NH3 +, thereby decreasing the electrostatic attractions between negatively charged anions; this decrease is attributed to the lower degree of adsorption.

There was a complete removal of copper ions from the solution when the solution’s pH value exceeded 6.5. This took place because copper ions began to precipitate as Cu(OH)2 . Therefore, copper ions were removed by both adsorption and precipitation when the solution’s pH value exceeded 6.5 [25]. As a result, the optimum pH values for Cu2+ adsorption were found to be in the pH range from 5 to 6, and all further adsorption experiments were carried out in solutions with a pH of 5.5 for Cu2+.

Adsorption isotherms of copper ions and phosphate ions

The data equilibrium isotherms of adsorption were conducted in 298 K, five initial concentrations of copper ions with the solutions’ pH 5.5 (50, 75, 100, 125, and 150 mg L−1), and those of phosphate ions with the solutions’ pH 3.0 (400, 500, 600, 700, and 800 mg L−1). The Langmuir and Freundlich equations [26,27] were applied to experimental data to examine the relationship between sorption ion concentration at equilibrium. The Langmuir equation could be expressed as follows (Equation (2)):

image           (2)

where Qe and Qm are the equilibrium and maximum adsorption capacities of copper ion/phosphate on the adsorbent (mg g−1), Ce, the equilibrium concentration of copper ion/phosphate in solution (mg L−1), and kL, the Langmuir adsorption constant (L mg−1). The linear form of the Freundlich equation can be represented as follows (Equation (3)):

image           (3)

where kF is the Freundlich constant (L mg−1), and n is the heterogeneity factor. The values of qm and kL are determined from the slope and intercept of the linear plots of Ce/Qe versus Ce, and the values of kF and 1/n are determined from the slope and intercept of the linear plot of lnQe versus lnCe, as shown in Table 2. The correlation coefficient of the Langmuir isotherms was found to be 0.9999 for the copper ions and 0.9918 for phosphate. However, those of the Freundlich isotherms for copper and phosphate ions were 0.9844 and 0.9872, respectively. Obviously, the data were fitted better by the Langmuir equation than by the Freundlich equation for both copper and phosphate. Furthermore, fitting of the Langmuir isotherm indicates a monolayer coverage for both Cu2+ and phosphate on the EDA/MMA/OA/Fe3O4 surface during adsorption. Moreover, the maximum monolayer phosphate uptake of 34.507 mg g−1 was significantly higher than the maximum monolayer copper uptake of 7.096 mg g−1 (Figure 3).

Adsorption kinetics

The effects of a contact time on the adsorption of Cu2+ and phosphate by EDA/MMA/OA/Fe3O4 at various temperatures (10, 25, and 40°C) were also evaluated, as shown in Table 3. The adsorption kinetics were analyzed using the pseudo-first-order and pseudosecond- order kinetic models, expressed in their linearized forms as Equation (4) and (5), respectively [28]:

Treatments Langmuir Freundlich
Qm(mg g-1) KL(Lmg-1) R2 n KF R2
Phosphate-ion 34.507 0.0044 0.9918 2.6371 2.2393 0.9872
Copper ion 7.096 0.0245 0.9999 1.728 0.668 0.9844

Table 2: Parameter values of different types of adsorption isotherm models fitting the experimental results for copper ions and phosphate adsorption, respectively on the EDA/MMA/OA/Fe3O4 adsorbents.


Figure 3:Effect of solutionâs pH values on copper ion adsorption on the EDA/MMA/OA/Fe3O4 adsorbent.

image       (4) image            (5)

where, qt (mg g–1) is the adsorption uptake at time t (min); qe (mg g–1) is the adsorption capacity at adsorption equilibrium; and k1 (min−1) and k2 (g(mg•min)-1) are the kinetics rate constants for the pseudofirst- order and the pseudo-second-order models, respectively. The results distinctly revealed that the adsorption kinetics for copper ions and phosphate closely follow the pseudo-second-order kinetic model rather than the pseudo-first-order kinetic model, which suggested that the adsorption process was quite rapid and was probably dominated by a chemical adsorption phenomenon.

Treatments Temperature R2 Rate Constants Activated Energy
1st order 2nd order k2(g mg-1 min-1) Ea(kJ mole-1)
Phosphate-ion 10°C 0.062 0.997 0.093 7.344
25°C 0.096 0.999 0.107
40°C 0.186 0.999 0.125
Copper ion 10°C 0.784 0.998 0.2214 13.356
25°C 0.754 0.999 0.2981
40°C 0.757 0.999 0.3804

Table 3: Parameter values of the kinetics models fitting the experimental results for copper ions and phosphate adsorption on the EDA/MMA/OA/Fe3O4 adsorbent.

Moreover, the temperature dependence of the kinetic parameter k2 could be described by the Arrhenius equation (Equation (6)):

image          (6)

where A, Ea, T and R are the frequency factor, activation energy, temperature (K), and gas constant, respectively. By plotting lnk2 against 1/T (K-1), the determined Ea of the copper ion and phosphate were 13.356 kJ mol–1 and 7.344 kJ mol–1, respectively.


HNO3 and NaOH solutions with different concentrations at the loading of EDA/MMA/OA/Fe3O4 = 5 g L−1, reaction time = 24 h, and T = 298 K were examined in a desorption study, as listed in Table 4. It is interesting to note that the maximum desorption efficiency of copper ions was achieved at a concentration of 0.1 M HNO3, and any higher or lower HNO3 concentrations resulted in lower desorption efficiencies. Thus, one may assume that the reactions taking place in acidic desorption solutions can be given by the following equations [29]:


At an HNO3 concentration > 0.1 M in an aqueous solution, the high concentration of H+ will shift both Equation (7) and (8) toward the right-hand side and more MMA/OA/Fe3O4NH3 + will be generated. However, the generation of MMA/OA/Fe3O4-NH3 + will favor the reverse reaction of Equation (7) to the left-hand side and simultaneously hinder the desorption of copper ions from the adsorbent. Therefore, when the concentration of HNO3 in the desorption solution exceeded 0.1 M, the results revealed that the desorption efficiency was reduced. On the other hand, at an HNO3 concentration < 0.1 M in an aqueous solution, the low concentration of H+ may be insufficient to drive the reaction in Equation (7) to the right-hand side for the desorption of copper ions. Therefore, the results observed show that the desorption efficiencies were lower than those at a 0.1M HNO3 concentration.

The results of the phosphate ion desorption is also interesting to note since maximum desorption efficiency was achieved at an NaOH concentration greater than 0.05 M and the desorption efficiencies were lower at lower NaOH concentrations. The reason for this is similar to the former explanation of Cu2+ desorption from a magnetic adsorbent. In order to explain this trend, one may assume that the reactions taking place in basic desorption solutions are represented by the following equations:


The added will shift the balance in both Equation 9 and 10 toward the right-hand side and a higher amount of MMA/OA/Fe3O4NH- will be generated. Furthermore, the generation of MMA/OA/Fe3O4NH- will facilitate phosphate desorption from the magnetic adsorbent. It was found that an NaOH concentration of 0.05 M was sufficient to achieve desorption of the phosphate. Corresponding to the experimental results of adsorptions at various pH values, the EDA/MMA/OA/ Fe3O4 adsorbent did not significantly adsorb phosphate ions with the increasing pH value, which suggests that the adsorbed phosphate ion could possibly be desorbed in a solution with an increasing pH value.


A dual functional adsorbent (EDA/MMA/OA/Fe3O4) was developed as a porous adsorbent for the adsorption of copper ions and phosphate. In a batch system, the optimal pH values for copper ions and phosphate adsorptions were 5.5 and 3, respectively. The adsorption equilibrium data were better fitted by the Langmuir equation than by the Freundlich equation for both copper ions and phosphate. Moreover, the maximum monolayer’s phosphate uptake of 34.507 mg g−1 was significantly higher than the maximum monolayer’s copper uptake of 7.096 mg g−1. The adsorption kinetics for copper ions and phosphate closely follow the pseudo-second-order kinetic model rather than the pseudo-first-order kinetic model. The derived activation energies of EDA/MMA/OA/Fe3O4, with the adsorption reaction of copper ions and phosphate were 13.356 kJ mol–1 and 7.344 kJ mol–1, respectively. The optimum conditions to desorb cationic and anionic adsorbates from the dual functional adsorbents were 0.1 M HNO3 for the copper ions and 0.05 M NaOH for phosphate, respectively. As expected, the prepared amino group magnetite (EDA/MMA/OA/Fe3O4) exhibited improved capacities for copper ions and especially phosphate, which opened a novel field to water treatment.

Concentration of
HNO3 or NaOH (M)
Copper ion desorption (%) Phosphate desorption (%)
0.01 82.6 86.1
0.05 85.2 90.7
0.1 90.4 90.3
0.5 84.1 89.5
1.0 84.6 88.9

Table 4: Desorption efficiency of copper ions and phosphates from the EDA/MMA/OA/Fe3O4 adsorbent in solutions with different HNO3 (for Cu2+)/NaOH (for phosphate) concentrations.


This research was supported in part by Grant MOST 104-2622-E-562-001- CC3 from the Ministry of Science and Technology, Republic of China.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Article Usage

  • Total views: 9068
  • [From(publication date):
    September-2016 - Dec 16, 2018]
  • Breakdown by view type
  • HTML page views : 8907
  • PDF downloads : 161

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri and Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry


[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version