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Abstract
Uttarakhand, the 27th state of India, is highly susceptible to landslides probably owing to its 86% area in Himalayan 

terrain. In recent times, however, the landslide incidents have increased leaps and bounds mainly due to unprecedented 
human interventions in the form of settlements, farming, road construction, myriad of hydroelectricity projects. One such 
case study is done in the current study around the Tehri Dam reservoir, Uttarakhand, India. Landslide causative factors 
such as slope, aspect, lithology, geology and geomorphology are derived using remote sensing techniques. Thereafter, 
two methods, Information Value (IV) and weight of evidence (WofE) model were applied and the output was reclassified 
into five zones viz. very low, low, moderate, high and very high. The validation of these models was performed using 
area under curve (AUC) analysis, which shows the accuracy of WofE model was 83% while that of IV model was 81%. 
Both WofE and IV susceptibility map shows 1.95% area under very high susceptibility zone which mostly covers the 
area bordering the reservoir hence implementing reservoir rim to be most prone for landslides. 
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Introduction
Landslide is a result of a wide variety of geo-environmental processes 

which involves geological, meteorological as well as anthropogenic 
factors. Most inherent factors facilitating landslides could be bedrock 
geology (includes lithology, structure, permeability, porosity), 
geomorphology (includes slope, aspect, curvature and relative relief), 
soil, land use/land cover and hydrological conditions. The present study 
is trying to consider these characteristics using remote sensing and 
GIS to demarcate landslide zones around Tehri Dam reservoir. Tehri 
reservoir (surface area 52 km2) was developed as a result of construction 
of an earth and rock fill dam (260.5 m high) at the confluence of two 
major glacial fed rivers named Bhagirathi and Bhilangna amidst of a 
highly rugged topography of Garhwal Himalayas. Many studies have 
indicated that impoundment of a reservoir has induced negative impact 
on the surrounding geo environmental system [1].

In 1984, Brabb [2] defined the term ‘landslide susceptibility’ as the 
spatial probability of occurrence of a landslide based on a set of geo 
environmental factors. In the same year Varnes [3] defined zonation (for 
landslide studies) as “division of the land surface into areas and ranking 
these areas according to the degree of actual or potential hazard from 
landslides or other mass movement on the slopes”. Therefore, putting 
together both the definitions, Landslide Susceptibility Zonation (LSZ) 
can be defined as the identification of areas of landslide occurrences 
over a certain region based on set of internal landslide causative factors. 
Susceptibility maps derived through LSZ helps in identifying landslide 
prone areas thus dividing them into different zones based on their degree 
of susceptibility to landslides. This requires identification of those areas 
that are or could be affected by landslides, and the assessment of the 
probability of such landslides occurring within a specific period. Clerici 
et al. [4] identified three different categories of methods for landslide 
susceptibility mapping. First is the deterministic method which is 
based on stability models relying upon the understanding of physical 
laws controlling slope stability, it can be suitable for mapping hazards 
in smaller areas [5-8]. Second is the heuristic method which is based 
on knowledge based indexing where causative factors are ranked and 
weighed according to their assumed importance in causing a slope 

failure. The third and the final method is the statistical method based 
on landslide inventories. 

In the present study, statistical approach involving landslide 
inventories is applied. In the case of large-scale mapping i.e., a small 
area, qualitative approaches are unreliable [9] hence, quantitative 
approaches such as deterministic and statistics are much feasible. 
Current methodology was preferred as the study area provides many 
sample points of landslides usually required and works best for a 
purely data-driven approach like WofE and it has been successfully 
implemented worldwide in diverse geological set up [10]. 

Study Area and Scope 
The study areas lies in districts Tehri and Uttarkashi of Uttarakhand, 

India under 78°22’28” E to 78°32’05” E longitude and 30°21’49” to 
30°28’05” latitudes. The prime focus of this study is in and around the 
Tehri reservoir and rim area. The area is in middle of an undulating 
topography represented by Lesser Himalaya with complex network of 
steams of dendritic pattern. Geologically, Tehri Dam and its reservoir 
lie in the main Himalayan block (MHB) in which the rocks of lesser 
Himalayan sequence are exposed. 

As illustrated in Figure 1, the study area primarily comprises of 
Phyllites of Chandpur formation and Quartzites of Nagthat of Garhwal 
group. The phyllites which represent the central part of Tehri gorge 
are, in general, banded in appearance, the bands being constituted 
of variable proportions of argillaceous and arenaceous materials. 
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Weathered quartzites of Nagthat formation, western part of study area, 
is characterized by white, purple, cherry-red and green colour. These 
rocks are separated by a predominant tectonic plane namely Srinagar 
Thrust also locally known as Pratapnagar fault, it runs in between 
the Garhwal Lesser Himalayan Zone delineating two different litho-
tectonic segments i.e., Jaunsar Group and the Garhwal Group in its 
south and north direction respectively.

Data Used and Methodology
Remote Sensing and GIS based investigations require large 

volumes of data primarily from remote sensing platforms along with 
ground truth data which is gathered from field investigation. First of 
all various causative factors are identified in the area of interest and 
then the thematic maps of these factors are prepared using different 
multispectral, panchromatic as well as stereo images. Multispectral 
data used in current study was LISS-IV obtained from IRS- Indian 
Remote Sensing Satellite, Panchromatic and stereoscopic images 
were CartoSat-1, also obtained from IRS, some thematic maps were 
also created from previously published maps and Survey of India 
toposheets. Software such as ESRI ArcMap 10.1, 10.3, Arc View were 
used for GIS based requirements while ERDAS IMAGINE 2014 was 
used for most of the remote sensing work (Figure 2). Detail of these 
materials used are given in Table 1. 

Thematic maps
Landslide inventory: Landslide inventory is the first and for most 

part in damage assessment and is essentially required for any kind of 
susceptible model [11-15]. “The distribution of landslides, the types of 
mass movements, the areas where landslides have occurred, the date of 
incidence, the past and present movement of slides can all be inferred 
from the landslide inventory map” [16-20]. “Preparing landslide 
inventories is very important for documenting the extent of landslide 
phenomena in a region, investigating the distribution, types, pattern, 
recurrence and statistics of slope failures, determining landslide 
susceptibility, vulnerability and risk, and studying the evolution of 
landscapes dominated by mass-wasting processes” [21].

Landslide inventory was prepared on 1:25,000 scales (Figure 3) from 
the high resolution RESOURCESAT LISS-IV (5.8 m) multispectral 
images acquired up to 2017. Generally, two sets of data are required 
for any statistical modeling, one for developing the model while other 
for validation. It is often seen that studies have been carried out using 
the same inventory, 70% for determining the model while 30% for 
validating, but here in this study two different landslide inventories are 
prepared.

A LISS-IV multispectral image of year 2012 (Figure 3a) was used to 
develop the models. A total 85 landslides covering an area of 3.79 km2, 
were identified based on their tone, texture, size and shape. Another 
inventory was prepared using another LISS-IV imagery of the year 
2017 (Figure 3b) for the purpose of validation of the models. It covered 
an area of 3.83 km2 which included some of the new landslides as well 
as some still active old landslides.

Topographic factors: Topographic parameters, i.e., aspect and 
slope (Figures 4a-4g) of the area are generated from the digital elevation 
model (DEM) which was derived from the high resolution Cartosat-1 
panchromatic stereoscopic imageries (2.5 m). 

Inclination angle of a slope plays a critical role in determining the 
shear stress of a slope, higher the slope angle greater will be the shear 
stress hence greater will be the probability of slope failure. Hence, 
knowing the slope angle is very essential in considering the causes 
of a landslide. It is very well known that in hilly terrain such as the 
Himalaya, most of the landslide occurs at slope ranging between 30°-
60° and it is rightfully seen in current study too where most of the 
landslides are concentrated in areas with a slope angle between 40°-80°. 
However, slope failures are also witnessed in areas with gentle slopes 
which may be caused due to other factors.

Aspect is another parameter which plays a crucial role in slope 
failures as it indicates the direction of the slope. In current study the 
slope aspect is classified into the following classes: Flat, North, North-
east, South, South-east, South-west, West and North-west. 

Vegetation and land use and land cover: The NDVI map (Figure 
4h) stands for normalized difference vegetative index, calculated by band 
ration using the formula (Near Infrared-Red)/(Near Infrared+Red). 
This index indicates the type of vegetation, for example evergreen 
forests have a higher vegetative index compared to deciduous forests. 
Hence it signifies the higher the NDVI values the denser the vegetation. 
Further it is well established that vegetation binds and holds the soil, 
hence the areas having high NDVI are less prone to slope failures. 

Second crucial factor is LULC (Figure 4f) which may be drastically 
varied by human interventions. Clearing forest lands for farming, 
grazing and settlements and all make the slope more precarious and 
hence lead to slope failures more frequently.

Figure 1: Study area map along with a geological map (Modified after K.S. 
Valdiya).

Figure 2: Methodology.
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and younger flood plain, thereby making it highly susceptible to 
landslides (Figure 4c). 

Drainage: Drainage Network has a prominent relation with 
the landslides. In mountainous terrain, streams play a major role in 
creating steep sided slopes by continuously eroding its banks. Such 
slopes are always more prone to failures resulting into landslides. 
For current work, Drainage map (Figure 4b) have been derived from 
Survey of India toposheets.

Lithology: Lithology in this work refers to the parent material 
which plays a significant role in slope movement as by providing slip 
surfaces, several lithological units are more prone to landslides than 
others. The hard and massive rocks are generally resistant to erosion, 
e.g., granite and limestone. Apart from that, rock composed by 
sandstone is more vulnerable to erosion so that it is more susceptible to 
a landslide (Figures 4i-4k).  

Soil type: Soil is the topmost layer present in any terrain. Thus, the 

Lineament density: Lineaments (Figure 4d) are linear features 
indicative of zones which are weak and hence these features tend to 
have a probability towards failure. Tectonic features such as thrust, 
faults comes under linear features, sometimes a drainage may also be 
associated with a lineament as it is easier for water bodies to run down 
an already weakened track. In this study lineaments were mapped using 
Cartosat-1 (mono) and classified into 5 classes based on the density.

Geomorphology: Geomorphological landforms like dissected hills 
are more susceptible to landslides while others like piedmont zones are 
less susceptible. The study area in the current work comprises highly 
dissected hills (covering about 80% of the area) and valleys, moderately 
dissected hills and valleys, piedmont alluvial plain, active flood plain, 

Type of Data Causative Factors Resolution/scale Source of Data Significance
Anthropogenic Road 2.5 m Cartosat-1 (mono) Slope modernization by cutting and fill

Geology Lithology 1:2,50,000 Valdiya 1980 Characteristic of hill slope material/strength of rocks
Geomorphology Geomorphology 1:25,000 IRS- LISS IV Landforms associated with landslides
Hydrogeology Drainage 1:25,000 IRS- LISS IV Toe and under cutting by flowing water

Land cover

LULC 1:25,000 IRS- LISS IV Landforms associated with landslides

NDVI 1:25,000 IRS- LISS IV Higher NDVI signifies higher vegetation, vegetation prevents 
mass wasting

Soil 1:2,50,000 National Bureau of Soil Survey 
(NBSS)  Type and depth of soil influence the mass movement

Topography

Aspect 10 m Cartosat-1 (Stereo) DEM Aspect of the area indicates the direction of the slope
Relative Relief 10 m Cartosat-1 DEM

Slope 10 m Cartosat-1 DEM Steeper slopes are more pronounced to landslide activity

Tectonics
Thrust & Faults 1:2,50,000 Valdiya 1980

Identification of the weak zones
Lineaments 10 m Cartosat-1 (mono)

Landslide Inventory Landslide 1:25000 IRS- LISS IV Spatio-temporal pattern of unstable zone

Table 1: Causative factors, sources and their significance.

Figure 3: Landslide inventory map along with field photographs of landslides 
all around the reservoir. (A) Landslide inventory map of 2012. (B) Landslide 
inventory map of 2017. 1-7, slope failure due to reservoir fluctuation between 
full reservoir level (FRL) and dead storage level (DSL) 8-9, slope failure due 
to road cutting.

 

Figure 4: Showing different thematic layers used in both the models (a) 
aspect map, (b) drainage density map, (c) geomorphology map, (d) lineament 
density map,  (e) relative relief map, (f) Land use land cover map, (g) slope 
map, (h) NDVI map, (i) road buffer map, (j) thrust buffer map (k) lithology 
map, (l) soil map.
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type of soil governs the movement of rocks or sediments. It has been 
observed that the loamy silty soil is more prone to landslide movement 
as compare to a clay rich soil which actually remain more intact (Figure 
4l).

Road buffer: Roads are an important key to development but as 
for the benefits it serves, it equally acts as one of the prime causative 
factors for slope instability in hilly terrain. Improper cutting of road 
may expose the bedding or foliation planes making it vulnerable, 
which result in sliding. Dumping of road cut material/overburden in 
downslope also results in instability hence a buffer zones was created 
around the road layer of 100 m difference up to 400 m. It was observed 
that 100 m buffer showed positive relation with the susceptibility while 
above 400 m was having a negative weight (Figure 4i). 

Landslide susceptibility analysis
As mentioned earlier, there are two approaches used in this study, 

weight of evidence (WofE) and information value (IV). Both of these 
methods are closely related to concepts from information theory where 
one of the goals is to understand the ambiguity involved in calculating 
the outcome of arbitrary events given varying degrees of knowledge of 
other variables. Thus, this is a perfect framework for variable screening 
and exploratory analysis for predictive modeling. 

Weight of Evidence (WofE) model: Weight of evidence model is 
a bivariate model based on Bayesian Bayes theorem and on the prior 
and posterior probability for determining the relation between the 
distribution of an area affected by landslides and the distribution of 
analyzed landslide susceptibility factors. Following are the formulas to 
calculate the WofE model. 
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Where, W+=positive weight

W−=negative weight

P=conditional probability

B=Presence of a potential LCF

B=absence of a potential LCF

L=Presence of a landslide

L=Absence of a landslide

C=(W+)-(W-)	  		   		           eq. (3)

Where, C stands for contrast in both the weights and the final 
weight is derived from eq. (3), which is assigned to each class of every 
landslide causative factor to produce a multiclass weighted map.

Information value method: The information value method 
involves finding the probability of Landslides within each class of 
landslide causative factors [22-26]. The final weight assigned to each 
class of the landslide causative factors is determine by the formula in 
eq. (4).
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(Si)

(Ni)

(Si)

(Si)

Npix
Npix

Wi = ln Npix
Npix

				             eq. (4)

Where, Wi=Weight of a factor class;

Npix(Si)=Number of pixel of landslide within class i;

Npix(Ni)=Number of pixel of class i;

ΣNpix(Si)=Number of Pixel of landslide within the whole study area;

ΣNpix(Ni)=Number of pixel of the whole study area.

Weights were calculated using above mentioned equations (eq.1, 
eq.2, eq.3, eq.4) and the values for each class of each factor is mentioned 
in the following Table 2.

Results and Discussion
A comparative graph was plotted between the calculated weights of 

both WofE and IV for each class of the causative factors and we can see 
in Figure 5, the trend for every class is almost similar.

The graph also shows that geomorphology, lithology, LULC and 
road network has a positive effect on causing landslide while greater 
NDVI regions, grasslands, forestlands have a negative weight. This 
confirms that areas with a better vegetal cover is supposed to be less 

Factors Class Class% Slide% W+ W- C Wi

Aspect

Flat 0.29 0.00 -0.29 0.00 -0.29 0.00
N 13.47 13.93 0.01 0.00 0.01 0.03

NE 10.31 2.16 -0.68 0.04 -0.72 -1.56
E 14.03 1.61 -0.94 0.06 -1.00 -2.17

SE 10.83 20.19 0.27 -0.05 0.32 0.62
SE 15.81 24.67 0.20 -0.05 0.24 0.44
SW 11.85 17.46 0.17 -0.03 0.20 0.39
W 14.06 16.40 0.07 -0.01 0.08 0.15

NW 9.35 3.58 -0.42 0.03 -0.44 -0.96

Geomorphology

Mass Wasting Product 0.06 2.69 1.73 -0.01 1.74 3.77
Piedmont Alluvial Plain 1.04 1.02 -0.01 0.00 -0.01 -0.02

Active Flood Plain 0.07 7.07 2.24 -0.03 2.27 4.60
Moderately Dissected Hills and Valley 24.27 23.38 -0.01 0.00 -0.02 -0.04

Highly Dissected Hills and Valleys 73.75 65.79 -0.05 0.11 -0.16 -0.11
Younger Alluvial Plain 0.04 0.00 0.00 0.00 0.00 0.00
Anthropogenic Terrain 0.08 0.05 -0.22 0.00 -0.22 -0.52

Water Bodies 0.67 0.00 0.00 0.00 0.00 0.00
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NDVI

(-0.5-0) 0.18 2.52 1.17 -0.01 1.18 2.62

0-0.5 86.94 94.60 0.04 -0.38 0.42 0.08

0.5-1 12.88 2.89 -0.65 0.05 -0.70 -1.49

Lithology

Tal Formation 1.51 0.00 0.00 0.01 -0.01 0.00

Krol Formation 4.35 0.00 0.00 0.02 -0.02 0.00

Blaini Formation 10.64 0.00 0.00 0.05 0.00 0.00

Rautgara Formation 9.88 8.94 -0.04 0.00 -0.05 -0.10

Chakrata Formation 3.45 5.61 0.21 -0.01 0.22 0.49

Deoban (Gangolithat) Formation 4.37 17.99 0.62 -0.07 0.69 1.41

Mandhali (Sar+Thalkedar) Formation 0.70 4.15 0.78 -0.02 0.80 1.78

Nagthat-Berinag Formation 39.51 6.07 -0.81 0.19 -1.00 -1.87

Debguru Porphyroid 0.50 0.00 0.00 0.00 0.00 0.00

Bhatwari and Barkot Units 0.41 0.59 0.16 0.00 0.16 0.36

Chandpur Formation 24.68 56.65 0.36 -0.24 0.61 0.83

LULC

GL 2.21 0.03 -1.92 0.01 -1.93 -4.43

WB 0.14 0.00 0.00 0.00 0.00 0.00

FL 14.60 24.69 0.23 -0.06 0.29 0.53

MF 18.45 20.64 0.05 -0.01 0.06 0.11

BU 0.56 4.47 0.91 -0.02 0.93 2.07

SL 0.66 0.00 0.00 0.00 0.00 0.00

CL 18.68 39.44 0.33 -0.13 0.46 0.75

EF 44.69 10.74 -0.62 0.21 -0.83 -1.43

Lineament Density

Very low 30.40 45.06 0.17 -0.10 0.28 0.39

Low 35.47 29.59 -0.08 0.04 -0.12 -0.18

Medium 24.84 12.96 -0.28 0.06 -0.35 -0.65

High 8.43 9.73 0.06 -0.01 0.07 0.14

Very high 0.86 2.66 0.50 -0.01 0.50 1.13

Relative relief

250 m 0.16 0.19 0.07 0.00 0.07 0.16

400 m 11.24 27.53 0.39 -0.09 0.48 0.90

600 m 77.86 63.81 -0.09 0.21 -0.30 -0.20

800 m 10.42 8.47 -0.09 0.01 -0.10 -0.21

993.2 m 0.32 0.00 0.00 0.00 0.00 0.00

Soil

Rocky,other non-soil categories 24.14 13.53 -0.25 0.06 -0.31 -0.58

Clay 16.85 8.91 -0.28 0.04 -0.32 -0.64

Loamy sand,sand 20.54 6.31 -0.51 0.07 -0.58 -1.18

Loam, silt loam,sandy loam 38.48 71.25 0.27 -0.33 0.60 0.62

Distance from Road

100 3.38 29.58 0.96 -0.14 1.10 2.17

200 2.50 14.47 0.77 -0.06 0.83 1.76

300 1.96 7.84 0.61 -0.03 0.64 1.39

>400 92.17 48.12 -0.28 0.82 -1.10 -0.65

Slope

0-10 0.00 0.01 0.27 0.00 0.27 0.62

10 to 30 56.54 44.08 -0.11 0.11 -0.22 -0.25

30 to 60 42.90 54.91 0.11 -0.10 0.21 0.25

60 to 90 0.56 1.00 0.25 0.00 0.25 0.57

Drainage Density

Very low 63.56 31.37 -0.75 0.41 -1.16 -0.71

Low 22.56 23.87 0.12 -0.04 0.16 0.06

Medium 10.90 34.12 0.68 -0.22 0.90 1.14

High 2.92 10.42 0.87 -0.06 0.93 1.27

Very high 0.06 0.22 0.00 0.00 0.00 1.26

Distance from Thrust 

<500 m 14.67 18.65 -0.06 0.08 -0.15 0.35

500-1500 m 24.91 25.97 0.13 -0.03 0.16 0.15

>1500 m 60.42 55.38 0.06 -0.02 0.08 0.02

Table 2: Weights calculated for different classes of causative factors.
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susceptible to landslides. Both WofE and IV models were applied with 
different combinations of thematic layers out of which the combination 
of 11 layers was the best fit. The output was then reclassified into five 
zones viz. very low, low, moderate, high and very high. The output is 
shown in Figure 6.

The final WofE susceptibility map indicate that about 1.95% area 
comes under very high susceptible zone, 10.4% of the area comes 
under high susceptible zone, 35.2% under moderate susceptible zone, 
40.5% has low susceptibility and 11.7% area has very low susceptibility 
to landslides. The final IV model showed 1.95% area under very 
high susceptibility, 14.6% area under high susceptibility, 38.4 under 
moderate and 30.04%, 14.9% under low and very low susceptibility 
zones respectively. Both WofE and IV models identified 1.95% of the 
total area to fall under very high susceptible zones and as we can in 
Figure 6, this highly landslide susceptible zone mostly lies around the 
reservoir rim and also follows the road network. Therefore it is quite 
clear that the landslide in this region is mostly affected by the reservoir 
water level fluctuations as well as improper road cutting (Table 3).

As one can see in Figure 7, the high correlation in the scatter plot 

 
Figure 5: Comparison between weights calculated for WofE and IV for each landslide causative factors.

 

Figure 6: Susceptibility maps with different classes using (a) Weight of Evidence (WofE) and (b) Information Value Method (IV).

(R2=0.9) between both the models, WofE model still have better success 
as well as prediction rate than IV model. Validation of these models 
were carried out using the area under curve analysis (AUC). The success 
rate for WofE model was obtained 82.18% while its prediction rate was 
83% where else in IV model, success rate was 78.1% and prediction 
rate was 81.1% (Figure 8). This proves that the WofE model correlates 
more with landslides but since both the models has a prediction rate 
greater than 80% hence we can say both the models have done a very 
good work in determining the relationship with the landslides in the 
current study area.

Conclusion
The susceptibility map reflects that left bank of Bhagirathi is more 

susceptible to mass wasting activities than rest of the area but is mostly 
influenced by road cutting. The current work not only presents one 
such case example where landslides occurs due to infrastructure 
development, but also the efficacy of remote sensing and GIS tools in 
mapping the landslide hazards and risks at regional scale. The current 
work enumerates and depicts the potentiality of each causative factor 
viz. drainage, NDVI, geomorphology, slope, aspect, land use/land 
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cover, soil, thrust, lineament density, lithology, relief and integrates 
them in GIS environ to demarcate landslide prone areas. The similar 
kind of maps can be utilized by the concerned government authorities 
in formulating disaster management and preparedness plan, executing 
a rehabilitation programme, carrying out environment planning and 
framing other future development policies. Identifying susceptible areas 
at regional scale shall facilitate the preparedness well in advance in case 
of any infortune and may minimize the damage to life and property. 

Figure 7: Scatter plot between different classes of Weight of Evidence and Information Value Model.

 
Figure 8: (a) Success rate curve, (b) Prediction rate curve.

Susceptibility Zones
Percentage of Slides

WofE IV
Very Low 11.72% 14.92%

Low 40.57% 30.04%
Moderate 35.27% 38.44%

High 10.47% 14.63%
Very High 1.95% 1.95%

Table 3: Distribution of landslides in classified susceptibility zonation map.

There are many measures to check and prevent landslides. However, 
when the entire terrain is susceptible, some common measures may 
be adopted to stabilize the slopes which includes plantation of shrubs, 
bushes and other trees. Further, depending upon the vulnerability and 
risk, some specialized measures like grouting may also be taken.
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