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Introduction
In vitro models allow for the distinct advantage of interrogating 

molecular perturbations in human cells while controlling for a variety 
of experimental conditions that are otherwise not possible in human 
clinical trials. Significant heterogeneity exists in the response to many 
drugs, with some individuals responding well to a prescribed therapy, 
and other individuals with the same disorder showing minimal or no 
response to the same therapy. This heterogeneity is thought to exist, 
at least in part, to genetic differences of individuals. Furthermore, it is 
difficult to address this problem during the drug development phase 
due to the fact that not all populations of individuals that will end up 
taking the drug are adequately represented during clinical trials [1-3]. 
Motivated by the variability of individual responses to medications, 
the field of pharmacogenomics and precision medicine aims to use 
genetic information from individuals to identify biomarkers of disease 
and to develop personalized therapies to improve treatment response 
and limit adverse outcomes [4]. In vitro, cell-based models, serve an 
important role in pharmacogenomics for early stage research questions 
(hypothesis generation) and late-stage research questions (functional 
validation). Epstein-Barr virus (EBV)-transformed, Lymphoblastoid 
cell lines (LCL), have proven particularly useful in pharmacogenomics, 
especially in the realm of cancer pharmacogenomics, due to the 
volume of publically available genetic information on cell lines derived 
from large cohorts of individuals. This resource provides the genetic 
variability of a clinical trial cohort, with the study design flexibility of 
an in vitro study. Here, we review advantages and disadvantages to this 
cell line model, and provide a brief overview of data resources, analysis 
techniques, and an example of a successful implementation using the 
LCL model.

Advantages and Disadvantages of the LCL Model
Advantages

In comparison to other model systems, there are a significant 
number of advantages provided by LCL models which have contributed 
to its widespread use. A table with key advantages to this model 
system can be found in (Table 1). The wealth of publically available 
resources makes this model system extremely cost effective. Examples 
of these publically available data for established cell lines include the 
International HapMap Project [5], Centre d’Etude du Polymorphisme 
Humain (CEPH) pedigrees [6], and the Human Variation Panel 
Populations [7]. These resources include genome-wide, single 

nucleotide polymorphism (SNP) data, copy-number variation data, 
family structure, baseline gene-expression data, and a growing volume 
of next-generation sequencing data. Additionally, biobanking efforts 
are increasing the number of locally available genotyped resources 
available [8,9]. The public availability of these data reduces the cost of 
genetic mapping to only the cost of the drug response phenotyping. 
Welsh and colleagues provide a more detailed review of these and 
other resources in their 2009 review [10]. While many of the resources 
have evolved since this earlier review, the resources themselves are still 
commonly used.

An additional advantage provided by this model system is that there 
are relatively few confounding factors compared to those that must be 
accounted for in clinical trials. Clinical trials are rarely designed for 
genetic analysis, and this can make the downstream genetic and drug 
response analysis very complicated due to confounding issues of 
study design, treatment regimens, and others. Although the potential 
for confounding certainly exists with in vitro model systems (e.g., 
batch effects, cell proliferation rates, passage number, etc.) these can 
be readily corrected through proper statistical analysis and technical 
execution [11,12]. 

Third, LCLs are amenable to robotic automation creating a high-
throughput assay system, which when combined with its relatively low 
cost, provides an opportunity for efficiently screening large number of 
drugs/chemicals. A recent study by Abdo et al. tested 179 chemicals 
in LCLs from 1086 individuals to interrogate genetic associations with 
environmental chemical toxicity [13]. In addition to the large numbers 
of chemicals/drugs that can be tested, LCLs are also available from large 
populations of individuals. Clinical trials usually consist of hundreds 
of mostly unrelated individuals, LCLs allow for as many cell lines as 
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Abstract
Lymphoblastoid cell lines (LCL) are becoming popular tools for modeling drug response. LCLs, and other in 

vitro assays, offer the ability to test many drugs, doses, and biological samples relatively quickly and inexpensively. 
In addition, a unique advantage to LCLs is that they are available from a large cohort of individuals, providing the 
capability to test for genetic variability on a scale not readily available in other in vitro systems. Since oftentimes the 
genotype data is publically available, the experimental costs can be limited to the cost of the drug response phenotyping. 
Here we describe several advantages and limitations of LCLs. In addition we review several important aspects of LCL 
experimental design and statistical analysis. Lastly, we present an example of LCLs being successfully used to identify 
candidate single nucleotide polymorphisms and genes for variability in response to a chemotherapeutic used to treat 
chronic myeloid leukemia.
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experimentally and economically feasible while allowing for heritability 
estimations and association mapping from family-based study designs 
[10,14].

Lastly, where replication of genetic associations from clinical 
trials is generally infeasible due to cost and practicality, the ease of 
genetic manipulation via knock-down or forced gene expression in 
LCLs provides a readily available system for functional validation of 
any findings in the initial gene mapping exercise. Several studies have 
used LCL models to functionally validate findings using knock-down 
experiments [15-17] and the advantages offered by these techniques are 
described in greater detail below.

Disadvantages

As with any model system, LCLs have several key limitations. 
Translating the biological relevance of in vitro phenotypes to in vivo 
outcomes remains a considerable challenge [10]. This limitation can be 
particularly significant when the drug is highly toxic, with a narrow 
therapeutic index. In many cases, it is still not clear whether in vitro 
sensitivity to drugs, such as chemotherapeutics, relates to drug efficacy, 
toxicity, or both. A related challenge is extrapolating in vitro test 
concentrations to relevant in vivo doses or exposures in humans. This 
can be especially difficult when very little pharmacokinetic information 
is available; however, models using combinations of in vitro and in silico 
assays have been previously developed to help address this limitation 
[18,19].

LCLs are created from peripheral B lymphocytes that have 
undergone transformation by EBV [20]. However, this cell type may 
not represent the tissue of interest for some drugs, and unfortunately, 
not all tissue types are amenable to EBV transformation. Hepatocytes 
are generally considered a highly relevant tissue for pharmacogenetic 
studies due to genetic variants impacting drug metabolizing enzymes, 
but hepatocytes are difficult and expensive to obtain. With continued 
advancement in stem cell technology, it is possible that the number 
of tissue types available for conducting in vitro genetic association 
mapping will expand.

Finally, cell line models do not always express all pharmacologically 
relevant molecular pathways. It is important to consider the limitations 
of each model cell line in the context of the drug(s) being investigated. 
Similar to most cell lines, LCLs do not readily express cytochrome P450 
(CYP450) genes. CYP450s are enzymes are responsible for metabolizing 
many drugs and xenobiotics. For example, prodrugs such as tamoxifen, 
require metabolic activation by CYP450s (i.e. CYP2D6 and CYP3A4) 
in order to perform their therapeutic action of binding, and ultimately 
antagonizing the estrogen receptor [21]. Therefore, it may be preferable 
to test an active metabolite, such as 4-hydroxytamoxifen, in LCLs rather 

than the parent chemical. In spite of not expressing CYP450s, LCLs do 
express approximately half of the known genome, making them a useful 
model system for generating and testing many different hypotheses 
[22].

Genotyping Approach
There is a wide range of options available for investigating many 

types of genetic variation in cell lines, such as LCLs. These methods 
range from testing candidate lists of targets (gene expression, SNPs, etc.) 
to testing the entire genetic landscape [23]. Although, it is becoming 
increasingly common to conduct genome-wide approaches, the best 
method will likely depend on the research questions being asked. Many 
studies conducted so far have relied on SNP data, but other types of 
genetic variation (e.g., epigenetic variation, copy number variation, 
gene expression) are being implemented more frequently [24,25]. 
Lastly, the International Hap Map project, and the other resources listed 
above, is making data spanning a wide range of technologies publically 
available [5-7].

Approaches for Statistical Analysis
Careful planning and deliberate approaches are necessary to 

ensure proper quality control (QC) to prevent potential issues related 
to experimental artifacts, and are highlighted in Choy et al. [11]. 
It is critically important to have sufficient biological and technical 
replication to evaluate the reliability and reproducibility of the 
experimental results [12]. Additionally, metrics for outlier detection, 
dose response relationships are often used in the QC process [12]. 
For genetic association studies, the more broadly used genome-wide 
association studies (GWAS) QC approaches can also be applicable for 
LCLs, and commonly include filtering data by percent missing data by 
individual, percent missing data by SNP, Hardy-Weinberg equilibrium 
violation, minor allele frequencies, and others. Additional details on 
best practices for genetic quality control can be found in Motsinger-
Reif et al. [12]. 

The motivation behind most gene mapping experiments using LCLs 
is to associate genotypes (or some other measure of biological variation) 
with a given phenotype (e.g., cytotoxicity). Appropriate methods will 
depend heavily on the study design and underlying assumptions (e.g., 
population stratification, batch effects). The most common approach, 
particularly in toxicogenomics studies, is to fit a non-linear dose 
response model, typically a Hill model, and use a parameter from 
the model to summarize the response profile [13]. These parameters 
include the maximum efficacy as a percentage of positive control 
(EMAX) or 50% inhibitory/effective concentration, IC50 or EC50, 
respectively [26]. There are several important assumptions that must 

Key Advantages Key Disadvantages
Wealth of publically available resources for LCL genotypes, which reduces the cost of 
genetic mapping to only the cost of the drug response phenotyping.  Difficulty of translating in vitro results to in vivo biological/clinical relevance

Fewer confounding factors compared to human clinical trials (e.g. concomitant 
medications, treatment regimes)  Extrapolating in vitro test concentrations to in vivo doses or exposures

Amenable to robotic automation which helps maintain quality control and reduces cost 
of testing

Cell lines amenable to immortalization may not be from the target tissue of interest 
for certain drugs

Amenable to high-throughput testing, which allows large numbers of chemicals, 
concentrations, cell lines, and replicates to be tested rapidly. 

Not all biological pathways are represented in LCLs, which may limit its utility for 
certain studies

Availability of genetic information allows for heritability estimation of phenotypes without 
needing to design complex human studies

Many metabolizing enzymes (e.g. CYP450s) are not represented in LCLs and 
other cell lines, which under some circumstances can make testing pro-drugs and 
other therapeutics challenging. 

LCLs can be easily manipulated to validate study findings using knock-down or forced 
gene expression methods.

Table 1: Key advantages and disadvantages to the LCL Model System.
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often and requires upregulating of the expression of the candidate gene 
to investigate the effect on the outcome of interest. Either forced gene 
expression or siRNA knock downs can be readily performed in the 
in vitro LCL model or in vivo mammalian model systems, such as a 
murine model.

Examples of Success
The substantial advantages of the LCL model have led to many 

exciting successes. Thorough reviews on these successes can be found 
in Welsh et al. [10] and Cox et al [36]. Here we briefly highlight one 
recent example of a successful use of LCL models for pharmacogenomic 
drug response by Tong et al [37]. Homoharringtonine (HHT) is a 
naturally occurring chemical used in China to treat acute myeloid 
leukemia (AML) and chronic myeloid leukemia (CML) for many 
years, and a synthetic version of HHT has been recently approved 
by the US FDA for CML [37,38]. However, not everyone responds 
to HHT, so Tong et al. conducted a GWAS to determine what SNPs 
were associated with cytotoxicity to HHT in LCLs. The cytotoxicity 
dose response was modeled and the area under the curve (AUC) was 
used as the phenotype and associated with SNPs in a GWAS. Although 
no SNPS reached genome wide significance (p<1x10-8), 18 SNPs had 
p<1x10−5 and 281 SNPs had p<1x10−4. Subsequently, 15 regions with 
≥ 2 SNPs with p<1x10−4 were identified and up to 3 genes within these 
regions were tested for functional validation. mRNA gene expression 
was also used to narrow this candidate gene list down to 7 genes for 
functional validation involving siRNA knockdown followed by MTS 
cytotoxicity. Interestingly, CCDC88A, CTBP2, and SOCS4 knockdowns 
demonstrated significant resistance to HHT sensitivity. CCDC88A 
impacts AKT signaling which is involved in DNA replication and cell 
proliferation, and has been shown to be relevant in AML [37,39]. In 
addition, CTBP2 and SOCS4 are also involved in signaling pathways 
that have been implicated in various cancers [37]. Although, additional 
validation is needed to establish the clinical relevancy of these target 
genes, this study highlights the tremendous potential that LCLs can 
provide when used in conjunction with proper validation.

Opportunities and Conclusion
The rapid advancements of cutting edge technologies offer exciting 

new opportunities for leveraging the benefits from LCL models. One 
example is next-generation sequencing, which is capable of measuring 
multiple types of genetic variations (e.g. SNPs, copy-number aberrations) 
in the same assay. Additional research into epigenetic modification 
and proteomics may generate new and exciting hypothesis for drug 
response variation and other research areas. The use of established LCL 
populations can provide opportunities for combining studies using 
multi-omics and integrative analyses, which in turn may provide new 
insight into disease etiology and drug response variation. One way 
to integrate these technologies is through pathway-based analyses. A 
variety of methods for conducting pathway analyses is available and 
reviewed by Khatri et al. [40]. Furthermore, many publically available 
databases for conducting pathway analysis are readily accessible, and 
include KEGG (http://www.genome.jp/kegg/), Gene Ontology (http://
www.geneontology.org/), and MSigDB (http://www.broadinstitute.org/
gsea/msigdb/index.jsp) to name only a few.

The LCL model offers an exciting and cost-effective solution for 
investigating many research questions regarding heritability of disease, 
drug response, disease etiology, precision medicine, and many others. 
Given the abundance of publically available data to augment the use of 
this cell line, it is likely that the use of LCLs will provide many new and 
impactful discoveries in the near future.

be recognized when implementing this approach. 1) Is the non-linear 
model chosen the most appropriate to describe the underlying biology, 
2) does the IC50 (or other univariate measure) sufficiently capture 
the variation between experimental conditions? Recently, simulation 
studies have indicated that modeling the full concentration response 
profile using a multivariate analysis of covariance (MANCOVA) 
or multiple regression approach can be more powerful than using 
univariate summary measures [26-28].

Typically, the phenotypic response is then compared to each variant 
tested. For testing allelic of genotypic coding an additive or dominance 
model is often assumed, meaning that the number of minor alleles 
changes with the phenotype linearly as in the former model, or the 
heterozygote and one of the homozygotes are treated equally in the latter 
model [29]. A more detailed account regarding different genetic models 
can be found in the article published by Lunetta [29]. Confounding 
variables can be incorporated into these models as covariates. However, 
a challenge in GWAS is that the number of variants being tested is 
often in the millions, and this large number of comparisons can lead to 
many type I errors (false positives). There are several commonly used 
approaches for correcting the problem of multiple comparisons. The 
Bonferroni correction is implemented by dividing the p value threshold 
by the number of statistical tests to obtain the new, corrected threshold 
for significance. This approach is considered conservative in its ability to 
reduce type I error, but can lead to inflated type II error (false negatives) 
in studies with smaller sample sizes. An alternative to the Bonferroni 
correction is to use a False Discovery Rate (FDR) approach, which aims 
to address inflated type I error while limiting inflated type II error [30]. 
A traditional threshold in GWAS is to use a p-value threshold of 5 x 10-8, 
which assumes a 5% chance that a positive association occurs randomly 
if 1 million SNPs are being tested [31]. 

In some circumstances, it is necessary to determine how well the 
biomarker or biomarkers (e.g., SNP) will predict the drug response 
phenotype. To develop a valid predictive model it is inadequate to 
assume that an observed association between a genetic marker and 
a phenotype will yield meaningful predictive capabilities. More 
comprehensive information on developing predictive models using 
biological data can be found in a book by Streyerberg [32] and an article 
by Moons et al. [33]. Briefly, it is important that the model developed 
from the biomarker, or set of biomarkers, is tested for its predictive 
performance using a dataset other than the one from which the model 
was constructed (training data). Cross-validation is one method of 
doing this, where a subset of the entire dataset is withheld from the 
model construction in order to provide a test data set for testing the 
predictive capability of the model. In order for a model to be clinically 
relevant, it must have the ability to accurately detect true-positives 
(sensitivity), and also accurately distinguish false-negatives and true-
negatives (specificity) [34]. If a model is not sufficiently sensitive then 
it may fail to detect individuals that may be at risk for an adverse effect. 
On the other hand, if a model is not sufficiently specific it may lead 
to individuals inappropriately being included for a therapy or for 
unnecessary follow-up testing [34].

Due to the large numbers of variants commonly tested in these cell 
line models, it is critical that candidate biomarkers and therapeutic 
targets are tested in a follow-up assay to confirm their association with 
the phenotype. A routinely used approach is to knock down the gene 
of interest using small interfering RNA (siRNA). Through silencing 
the candidate gene, it is possible to elucidate the functional effect that 
target has on the outcome of interest. This method is reviewed in detail 
by Shan [35]. Another alternative, forced gene expression, is used less 

http://www.genome.jp/kegg/
http://www.geneontology.org/
http://www.geneontology.org/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
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