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Abstract

This paper provides a brief review of airborne light detection and ranging (LiDAR) data for characterizing linear
and planar geomorphic markers in tectonic geomorphology, including traces of active faults and surface deformation
caused by earthquakes. Challenges and opportunities of LiDAR for the study of tectonic geomorphology and
coseismic deformation are also discussed.
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Introduction
A fundamental theme of tectonic geomorphology is to understand

the relation between tectonic processes and surface processes that
build and modify topography. Therefore tectonic geomorphology is
closely related to geomorphology, tectonics, seismology,
geochronology, geodesy, and Quaternary climate change. For over a
century, numerous conceptual models of landscape evolution under
tectonic and climate regimes have been proposed [1]. To quantify the
amount of deformation that has occurred due to tectonic processes,
identifiable geomorphic features are needed to provide a reference
frame. These geomorphic features are called geomorphic markers [1],
including linear geomorphic markers such as streams and glacial
moraines, and planar geomorphic markers such as terraces and
alluvial fans.

In order to calculate the rates of tectonic movement, there are two
important parameters for geomorphic markers: age and geometry. In
the past several decades, new geochronologic methods have been
developed for determining the age of tectonic and geomorphic
markers [1,2]. With increasing accuracy in dating geomorphic
features, improvements in quantifying the geometry of geomorphic
markers can produce more accurate rates of deformation. Light
detection and ranging (LiDAR) is an active remote sensing technology
that uses laser pulses to map three-dimensional coordinates of Earth
surface features from spaceborne, airborne or ground-based platforms,
with sub-meter to centimeter level accuracy, respectively. The last
decade has seen wide applications of LiDAR in geomorphic studies.
Roering et al. [3] summarized the contribution of airborne LiDAR in
geomorphic research in three aspects: (1) providing a detailed base
map for field mapping and sample collection, (2) facilitating model
testing through increased accuracy and sample sizes, and (3) enabling
the identification of unanticipated and sometimes unexplained
landforms. Tarolli [4] discussed some opportunities and challenges of
LiDAR data for understanding Earth surface processes. This paper
provides a brief review of LiDAR data for characterizing linear and

planar geomorphic markers in tectonic geomorphology, including
traces of active faults and surface deformation caused by earthquakes.

Linear Geomorphic Markers Revealed by LiDAR
The interactions between tectonic movement, erosion and

sedimentation can modify linear geomorphic features. Offset channels
associated with strike-slip faults are good examples of linear
geomorphic markers that can be used to determine the rate and nature
of tectonic movement. While tectonic landforms can be found in
many parts of the world, the south-central San Andreas Fault (SAF) in
California has arguably some of the world’s best-preserved tectonic
landforms at 10s and 1000s of meter scale [5-7]. The most famous
offset feature is the offset channel at Wallace Creek across the San
Andreas Fault zone in the Carrizo Plain, California [8].

The acquisition of LiDAR data by the B4 project [9] provides new
research opportunities for better understanding of the tectonic
geomorphology and neotectonic deformation history of the SAF.
Arrowsmith and Zielke [10] evaluated the use of LiDAR data for
mapping recently active breaks in the Cholame segment of the south-
central SAF, and concluded that a LiDAR-only approach compares
well with a combination of aerial photographic and field-based
methods. Zielke et al. [11] determined that the average slip along the
Carrizo segment of the south-central SAF during the 1857 Mw 7.9
earthquake was 5.3 ± 1.4 meters. Zielke et al. [12] employed LiDAR
data to reevaluate the distribution of surface displacement along the
rupture trace of the 1857 Mw 7.9 earthquake using 450 offset
measurements with displacements below 60 m. Their results show that
the 1857 earthquake had an average displacement of less than 3.5 m
with 4–6 m released along the northwestern half of the rupture. To
measure lateral displacements of offset linear geomorphic features
such as stream channels and alluvial fan edges, Zielke and Arrowsmith
[13] developed a Matlab-based tool to visually reconstruct and assess
lateral displacements through slicing a digital elevation models (DEM)
and back slipping. The LiDAR data for the south-central SAF and
relevant case studies have facilitated the application of LiDAR for the
quantification of linear geomorphic markers and active faults in
general.
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In the Lake Tahoe Basin, California, tectonic offsets of linear glacial
moraines have been used to calculate slip rates of active normal faults
obscured by dense vegetation. Howle et al. [14] used bare-earth point
cloud data to mathematically reconstruct linear lateral moraine crests
on both sides of faults. The reconstructed moraine crests produced
statistically significant ‘piercing lines’ that were projected to
intersection with modeled fault planes to define ‘piercing points’ in 3D
space. The measured tectonic displacements were coupled with 10Be
and 26Al terrestrial cosmogenic nuclide (TCN) surface exposure ages
and optically stimulated luminescence (OSL) ages of the displaced
moraines to estimate late Pleistocene slip rates. The results of the study
yielded a two to three fold increase over previous estimates of tectonic
slip rates in the Lake Tahoe region.

LiDAR data have also been used for discovering new active faults
and delineating earthquake surface ruptures in vegetated areas. While
LiDAR data have been collected over known active fault zones for fine-
scale study of tectonic-geomorphic features (e.g. [9,15,16]), new active
faults have been discovered using LiDAR data collected from areas
that have been overlooked by scientists. For example, Hunter et al. [17]
discovered a previously unmapped fault using LiDAR data near the
Martis Creek Dam, Truckee, California. Székely et al. [18] used LiDAR
data in an extremely flat area, east of Neusiedlersee in Hungary, and
discovered linear geomorphic features, which are several hundred
meters to several kilometers long. Field investigation and analysis of
other geological and geophysical data indicate that the linear features
have a neotectonic origin, representing the surface expression of a
seismically active fault. In areas with dense vegetation cover in the U.S.
Pacific Northwest and Europe, 2-m resolution DEMs derived from
LiDAR data have been successfully used for delineating earthquake
surface ruptures [19-21]. Using 2-m and 3-m resolution DEMs derived
from LiDAR data along portions of the Alpine and Hope faults in New
Zealand, Langridge et al. [22] found that the surface strike variations
of the Alpine Fault are more variant than previously mapped, and that
unprecedented views of the surface geomorphology of these active
faults can be revealed by LiDAR data. However, some other LiDAR
studies on the northern San Andreas Fault and central Japanese
mountains indicated that 2-m resolution DEMs could not identify
some small tectonic breaks [23,24]. Using airborne LiDAR data
collected from orthogonal flight lines, Lin et al. [25] created 0.5-m
resolution DEMs along the Neodani Fault in Japan, and revealed a
number of previously unknown fault scarps and active fault traces
hidden under dense vegetation. Although the cost of data collection
will increase with overlapping flight lines, the greater bare-earth data
density, collected from different angles, will likely enhance the imaging
of subtle geomorphic markers in densely forested areas.

Planar Geomorphic Markers Revealed by LiDAR
Planar geomorphic features such as fluvial terraces, alluvial fans,

and marine terraces have been widely used as geomorphic markers in
tectonic deformation studies [26-33], while erosion surfaces such as
pediments [34,35] and glacis [36] have been less used as geomorphic
markers due to the difficulty in dating of such surfaces. Several studies
have used LiDAR data to analyze tectonic deformation of alluvial fans
and marine terraces. Frankel et al. [37] determined new slip rates of
the Death Valley–Fish Lake Valley fault system in eastern California
and western Nevada by combining alluvial fan offsets measured from
1-m resolution LiDAR-derived DEM with 10Be TCN and OSL ages
from displaced alluvial fans. In a study of deformation variations off
the San Andreas Fault, Crosby et al. [38] extracted elevations of the

marine terrace inner edges from a LiDAR-derived DEM between Fort
Ross and Mendocino, California. Based on the observations, they
estimated that the late Pleistocene uplift rate is about 0.75-0.95 mm/yr
immediately north of the San Andreas Fault, and 0.28-0.38 mm/yr
near Mendocino. Bowles and Cowgill [39] presented a semi-
automated surface classification method to identify probable marine
terraces along a 70-km-long section of the northern California coast
using slope and surface roughness properties obtained from LiDAR-
derived DEM. Analysis of 21 observed platform elevations and those
predicted from sea-level curves suggests that the surface uplift rate for
the northern coast of California has been 0.2 mm/yr over the past 2
Ma. In comparison with studies of linear geomorphic markers using
LiDAR data, case studies of planar geomorphic markers using LiDAR
data are relatively limited.

Planar geomorphic markers can help identify linear geomorphic
markers in some cases. For example, if an active fault is hidden
beneath an alluvial fan on which a city has been built, it could be very
difficult to identify traces of the active fault because of the interference
of man-made structures. However, high-resolution topographic
profiles of the alluvial fan may reveal traces of the active fault. Kondo
et al. [40] provided a good example of identifying a continuous fault
scarp using LiDAR data in Matsumoto, a city built on an alluvial fan in
central Japan. They created a high-resolution (0.5m) DEM after
filtering out laser returns from buildings and vegetation, and identified
a fault scarp of up to 2 m in height using segmented least squares
fitting on the topographic profiles derived from the alluvial fan.
Borehole data and archaeological studies indicate that the fault scarp is
indeed in a pull-apart basin, and were formed during the most recent
faulting event associated with historical earthquakes. In the Rangitaiki
Plains, the fastest extending section of the onshore Taupo Rift in New
Zealand, Begg and Mouslopoulou [41] used fault-parallel and fault-
normal profiles created from a LiDAR-derived DEM with 3.5 m
resolution, and identified a vertical displacement of ~3 m across an
active normal fault. Topographic profiles derived from LiDAR data are
effective for quantifying vertical displacements caused by active faults.

Surface Deformation Revealed by Differential LiDAR
Some geological events such as earthquake and volcanic eruption

can cause rapid changes in landform. For example, numerous studies
have shown that strike-slip earthquakes can cause pressure ridges
(mole tracks) and sag basins along active faults [8,17,42,43]. In
tectonically active areas with multi-temporal LiDAR data coverage, it
is possible to use differential LiDAR data for detecting changes in
geomorphic markers caused by earthquakes. So far, pre- and post-
earthquake LiDAR data are available only in deformation zones caused
by the following four earthquakes: the 2010 Mw 7.2 El Mayor-Cucapah
earthquake in Mexico [44-47], the 2010 Mw 7.1 Darfield earthquake in
New Zealand [48], the 2008 Mw 6.9 Iwate–Miyagi earthquake in Japan
[49], and the 2011 Mw 7.1 Fukushima–Hamadori earthquake in Japan
[49].

Given pre- and post-earthquake LiDAR data, it is relatively
straightforward to quantify volumetric changes in topography such as
subsidence, uplift, and earthquake-triggered landslides. However,
interpreting surface deformation patterns and understanding fault
behavior can be more complex because of lateral motions. Leprince et
al. [44,50] used image coregistration and sub-pixel correlation
methods to calculate horizontal offsets from LiDAR-derived DEMs,
which are then back-slipped and differenced to obtain the vertical
displacements. Using pre-earthquake LiDAR data collected in 2005 for
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the southern San Andreas, San Jacinto, and Banning faults in
California, USA, Borsa and Minster [51] developed a processing
algorithm to obtain rapid estimates of near-fault ground deformation
using simultaneous cross correlation of both topography and
backscatter intensity from pre-earthquake and simulated post-
earthquake LiDAR datasets. Using differential LiDAR data for the
2010 Mw 7.2 El Mayor-Cucapah earthquake in Mexico, Oskin et al.
[45] obtained differential elevation changes that show distributed,
kilometer-scale bending strain as large as ~103 microstrains along
discontinuous faults. As the methods used in Leprince et al. [44,50]
and Borsa and Minster [51] involve gridding/smoothing of LiDAR
data, biases or artifacts could be introduced in the results. To work
with LiDAR point clouds directly, Nissen et al. [46] introduced a new
method for calculating 3-D coseismic surface displacements from pre-
and post-earthquake LiDAR data based on the Iterative Closest Point
(ICP) algorithm [52,53]. The method was also used to extract three-
dimensional displacements and rotations from pre- and post-
earthquake LiDAR data for the 2008 Iwate–Miyagi earthquake and the
2011 Fukushima–Hamadori earthquake in Japan [49]. One limitation
of the method by Nissen et al. [46,49] is that it is based on the
assumption that all LiDAR points in the compared point clouds have
uniform accuracy, whereas the error for each LiDAR point depends on
variable factors such as the range from system to target and the
incidence angle of laser beam. To take into account the random errors
in differential LiDAR point clouds, Zhang et al. [47] developed an
error propagation method to generate an estimated random error for
each LiDAR point, and obtain 3D displacements between two LiDAR
point clouds using an anisotropic weighted ICP algorithm. Surface
deformation investigations using pre- and post-earthquake LiDAR
data is a relatively new area that will undoubtedly expand with time.

Concluding Remarks
Many studies have demonstrated the capability of LiDAR for the

quantification of linear and planar geomorphic markers in tectonic
geomorphology, including active faults and surface deformation
caused by earthquakes. In areas with dense vegetation cover, the
capability of LiDAR in obtaining bare-earth points allows for
delineation of subtle traces of active faults. Coupled with accurate
dating techniques and field investigation, LiDAR data can facilitate a
better understanding of the patterns and rates of neotectonic
deformation. It should be noted that in this review, only airborne
LiDAR data are discussed, whereas terrestrial laser scanning (TLS) has
been used for characterizing linear geomorphic markers in recent
studies [17,54-56].

Major limitations LiDAR include the lack of continuous global data
coverage and relatively high cost of data collection. Unlike optical and
radar imaging systems that can provide global data coverage through
satellite platforms, current LiDAR systems mainly work on airborne
and ground-based platforms, and the cost of data collection for large
geographic areas can be prohibitive. Moreover, pre- and post-
earthquake LiDAR are only available for a few earthquake-stricken
areas. It is hoped that existing LiDAR datasets will provide an
important baseline for surface deformation studies after future
earthquakes.
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