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Abstract
After introducing the concept of Lie-admissible coalgebras, we study a remarkable class

corresponding to coalgebras whose coassociator satisfies invariance conditions with respect
to the symmetric group Σ3. We then study the convolution and tensor products.
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1 Definitions and examples

In this work K indicates a field of characteristic zero. Let M be a K-vector space and ∆ a
K-linear comultiplication map ∆ : M → M ⊗M . The coassociator of ∆ is denoted by

Ã(∆) = (∆⊗ Id) ◦∆− (Id⊗∆) ◦∆ (1.1)

and the flip τ : M⊗2 → M⊗2 is the linear map defined by τ(x⊗ y) = y ⊗ x.
Let Σ3 be the symmetric group of degree 3. We denote by c1 and c2 the 3-cycles of Σ3 and τij

the transposition echanging i and j. For every σ ∈ Σ3, we define a linear map ΦM
σ : M⊗3 → M⊗3

by

ΦM
σ (x1 ⊗ x2 ⊗ x3) = xσ−1(1) ⊗ xσ−1(2) ⊗ xσ−1(3)

Definition 1. The pair (M,∆) is a Lie-admissible coalgebra if the linear map ∆L : M → M⊗M
defined by ∆L = ∆− τ ◦∆ is a Lie coalgebra comultiplication, that is, if ∆L satisfies{

τ ◦∆L = −∆L

Ã(∆L) + ΦM
c1 ◦ Ã(∆L) + ΦM

c2 ◦ Ã(∆L) = 0

Recall that a multiplication µ of a K-algebra (A, µ) is Lie-admissible if its associator

A(µ) = µ ◦ (µ⊗ Id)− µ ◦ (Id⊗ µ)

satisfies

Σσ∈Σ3 (−1)ε(σ)A(µ) ◦ ΦA
σ = 0

where ε(σ) is the sign of the permutation σ. This means that the algebra (A, [, ]) whose product is
given by the bracket [x, y] = µ(x, y)−µ(y, x) is a Lie algebra. We have a similar characterization
of a Lie-admissible comultiplication.

Proposition 1. A comultiplication ∆ on M is a Lie-admissible comultiplication if and only if
∆ satisfies∑

σ∈Σ3

(−1)ε(σ)ΦM
σ ◦ Ã(∆) = 0 (1.2)

where ε(σ) denotes the sign of the permutation σ.

Proof. It is a direct consequence of Equation (1.1) because

Ã(τ ◦∆) = ((τ ◦∆)⊗ Id) ◦ τ ◦∆− (Id⊗ (τ ◦∆)) ◦ (τ ◦∆)

= −(ΦM
τ13 ◦ Ã)(∆)

This proves the proposition.
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Examples

• Every coassociative coalgebra is a Lie-admissible coalgebra.
• The comultiplication of a pre-Lie coalgebra (M,∆) satisfies

Ã(∆)− ΦM
τ23 ◦ Ã(∆) = 0 (1.3)

Since the composition of (1.3) by ΦM
c1 and ΦM

c2 gives respectively

ΦM
c1 ◦ Ã(∆)− ΦM

τ13 ◦ Ã(∆) = 0

and

ΦM
c2 ◦ Ã(∆)− ΦM

τ12 ◦ Ã(∆) = 0

we obtain Identity (1.2) by summation of (1.3) with these two equations and every pre-Lie
coalgebra is Lie-admissible.

In the following sections we generalize these examples.

2 Gi-coalgebras

An interesting class of Lie-admissible coalgebras is obtained by dualizing the Gi-associative
algebras. These Lie-admissible algebras has been introduced in [9] and developed in [3]. Let us
point out these initially notations.

2.1 Σ3-associative algebras

Let K [Σ3] be the group algebra associated to Σ3, where K is a field of characteristic zero. Every
v ∈ K [Σ3] decomposes as follows:

v = a1id + a2τ12 + a3τ13 + a4τ23 + a5c1 + a6c2

or simply

v =
∑
σ∈Σ3

aσσ

where aσ ∈ K. If A is a K-vector space, then we define from such a vector v the endomorphism
ΦA

v of A⊗3 by

ΦA
v =

∑
σ∈Σ3

aσΦA
σ

Consider the natural right action of Σ3 on K[Σ3]:

Σ3 ×K[Σ3] → K[Σ3], (σ,
∑

i

aiσi) 7→
∑

i

aiσ
−1 ◦ σi

The corresponding orbit of a vector v ∈ K [Σ3] is denoted byO(v) and generates a linear subspace
Fv = K(O(v)) of K[Σ3]. It is an invariant subspace of K [Σ3]. Therefore, using Mashke’s theorem,
it is a direct product of irreducible invariant subspaces.

Let (A, µ) be a K-algebra with multiplication µ and A(µ) its associator.
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Definition 2. An algebra (A, µ) is a Σ3-associative algebra if there exists v ∈ K [Σ3], v 6= 0
such that A(µ) ◦ ΦA

v = 0.

Proposition 2. Let v be in K [Σ3] such that dim Fv = 1. Then v = αV or v = αW with α ∈ K
and the vectors V and W are the following vectors:

V = Id− τ12 − τ13 − τ23 + c1 + c2 (2.1)
W = Id + τ12 + τ13 + τ23 + c1 + c2 (2.2)

The first case corresponds to the character of Σ3 given by the sign, the second corresponds
to the trivial case.

Every algebra (A, µ) whose associator satisfies

A(µ) ◦ ΦA
V = 0

is a Lie-admissible algebra. Likewise an algebra (A, µ) whose associator satisfies

A(µ) ◦ ΦA
W = 0

is 3-power associative, that is, it satisfies A(µ)(x, x, x) = 0 for every x ∈ A.

2.2 Gi-associative algebras

The class of Σ3-associative Lie-admissible algebras contains interesting subclasses associated to
the subgroups Gi of Σ3 that we naturally call Gi-associative algebras. Let us introduce some
notations. Consider the subgroups of Σ3:

G1 = {Id}, G2 = {Id, τ12}, G3 = {Id, τ23}
G4 = {Id, τ13}, G5 = {Id, c1, c2} = A3, G6 = Σ3

Definition 3. Let Gi be a subgroup of Σ3. The algebra (A, µ) is Gi-associative if∑
σ∈Gi

(−1)ε(σ)A(µ) ◦ ΦA
σ = 0 (2.3)

Proposition 3. Every Gi-associative algebra is a Σ3-associative algebra.

Proof. Every subgroup Gi of Σ3 corresponds to an invariant linear space F (vi) generated by
a single vector vi ∈ K[Σ3]. More precisely we consider v1 = Id, v2 = Id − τ12, v3 = Id − τ23,
v4 = Id− τ13, v5 = Id + c1 + c2 and v6 = V that we have defined in (2.1).

Proposition 4. Every Gi-associative algebra is a Lie-admissible algebra.

Proof. The vector V belongs to the orbits O(vi) for every vi. Thus, if µ is a Gi-associative
product, it also satisfies

A(µ) ◦ ΦA
V = 0

and µ is a Lie-admissible multiplication.

We deduce the following type of Lie-admissible algebras:

1. A G1-associative algebra is an associative algebra.
2. A G2-associative algebra is a Vinberg algebra. If A is finite-dimensional, the associated

Lie algebra is provided with an affine structure.
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3. A G3-associative algebra is a pre-Lie algebra.
4. If (A, µ) is G4-associative then µ satisfies

(X · Y ) · Z −X · (Y · Z) = (Z · Y ) ·X − Z · (Y ·X)

with X · Y = µ(X, Y ).
5. If (A, µ) is G5-associative then µ satisfies the generalized Jacobi condition :

(X · Y ) · Z + (Y · Z) ·X + (Z ·X) · Y = X · (Y · Z) + Y · (Z ·X) + Z · (X · Y )

with X ·Y = µ(X, Y ). Moreover if the product is skew-symmetric, then it is a Lie algebra
bracket.

6. A G6-associative algebra is a Lie-admissible algebra.

2.3 Gi-coalgebras

Dualizing the formula (2.3) we obtain the notion of Gi-coalgebra.

Definition 4. A Gi-coalgebra is a K-vector space M provided with a comultiplication ∆ satis-
fying ∑

σ∈Gi

(−1)ε(σ)ΦM
σ ◦ Ã(∆) = 0

Remark. We can present an equivalent and axiomatic definition of the notion of Gi-associative
algebra. A Gi-associative algebra is (A, µ, η,Gi) where A is a vector space, Gi a subgroup of
Σ3, µ : A⊗A −→ A and η : K → A are linear maps satisfying the following axioms:

1. (Gi-ass): The square

A⊗A⊗A
(µ⊗Id)Gi−−−−−−→ A⊗A

(Id⊗µ)Gi

y µ

y
A⊗A µ−−−−→ A

commutes, where (Id⊗ µ)Gi
is the linear mapping defined by:

(Id⊗ µ)Gi
=

∑
σ∈Gi

(−1)ε(σ)(Id⊗ µ) ◦ ΦA
σ

If we impose that the algebra is unitary we have to add the following axiom:

2. (Un) The following diagram is commutative:

K⊗A
η⊗id //

%%KKKKKKKKKK A⊗A
µ

��

A⊗K
id⊗ηoo

yyssssssssss

A

The axiom (Gi-ass) expresses that the multiplication µ is Gi-associative whereas the axiom
(Un) means that the element η(1) of A is a left and right unit for µ. We want to dualize the
previous diagrams to obtain the notions of corresponding coalgebras. Let ∆ be a comultiplication
∆ : M −→ M ⊗M . We define the bilinear map

Gi ◦ (∆⊗ Id) : M⊗3 −→ M⊗3
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by

Gi ◦ (∆⊗ Id) =
∑
σ∈Gi

(−1)ε(σ)ΦA
σ ◦ (∆⊗ Id)

A Gi-coalgebra is a vector space M provided with a comultiplication ∆ : M −→ M ⊗M and a
counit ε : M → K such that

1. (Gi-ass co) The following square is commutative:

M
∆−−−−→ M ⊗M

∆

y yGi◦(Id⊗∆)

M ⊗M
Gi◦(∆⊗Id)−−−−−−−→ M ⊗M ⊗M

If we suppose moreover that the coalgebra is counitary we have to add the following axiom:

2. (Coun) The following diagram is commutative:

K⊗M M ⊗M
ε⊗idoo id⊗ε // M ⊗K

M

∆

OO 88rrrrrrrrrrr

ffLLLLLLLLLLL

A morphism of Gi-coalgebras

f : (M,∆, ε, Gi) → (M ′,∆′, ε′, Gi)

is a linear map from M to M ′ such that

(f ⊗ f) ◦∆ = ∆′ ◦ f and ε = ε′ ◦ f

Proposition 5. Every Gi-coalgebra is a Lie-admissible coalgebra.

Proof. The Lie-admissible coalgebras are given by the relation∑
σ∈Σ3

(−1)ε(σ)ΦM
σ ◦ Ã(∆) = ΦM

V ◦ Ã(∆) = 0

Since for every vi =
∑

σ∈Gi
(−1)ε(σ)σ we have V ∈ Fvi , we deduce the proposition.

2.4 The dual space of a Gi-coalgebra

For any natural number n and any K-vector spaces E and F , we denote by

λn : Hom(E,F )⊗n −→ Hom(E⊗n, F⊗n)

the natural embedding

λn(f1 ⊗ . . .⊗ fn)(x1 ⊗ . . .⊗ xn) = f1(x1)⊗ . . .⊗ fn(xn)

Proposition 6. The dual space of a Gi-coalgebra is provided with a structure of Gi-associative
algebra.
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Proof. Let (M,∆) be a Gi-coalgebra. We consider the multiplication on the dual vector space
M∗ of M defined by µ = ∆∗ ◦ λ2. It provides M∗ with a Gi-associative algebra structure. In
fact we have

µ(f1 ⊗ f2) = µK ◦ λ2(f1 ⊗ f2) ◦∆ (2.4)

for all f1, f2 ∈ M∗ where µK is the multiplication in K. Equation (2.4) becomes:

µ ◦ (µ⊗ Id)(f1 ⊗ f2 ⊗ f3) = µK ◦ (λ2(µ(f1 ⊗ f2)⊗ f3)) ◦∆
= µK ◦ λ2((µK ◦ λ2(f1 ⊗ f2) ◦∆)⊗ f3) ◦∆
= µK ◦ (µK ⊗ Id) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (∆⊗ Id) ◦∆

The associator A(µ) satisfies

A(µ) = + µK ◦ (µK ⊗ Id) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (∆⊗ Id) ◦∆
− µK ◦ (Id⊗ µK) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (Id⊗∆) ◦∆

and using associativity and commutativity of the multiplication in K, we obtain

A(µ) = µK ◦ (µK ⊗ Id) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ ((∆⊗ Id) ◦∆− (Id⊗∆) ◦∆)

Thus ∑
σ∈Gi

(−1)ε(σ)A(µ) ◦ ΦM∗
σ = µK ◦ (µK ⊗ Id) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (Gi ◦ (∆⊗ Id) ◦∆

−Gi ◦ (Id⊗∆) ◦∆)
= 0

and (M∗, µ) is a Gi-associative algebra.

Proposition 7. The dual vector space of a finite dimensional Gi-associative algebra has a Gi-
coalgebra structure.

Proof. Let A be a finite dimensional Gi-associative algebra and let {ei, i = 1, ..., n} be a basis
of A. If {fi} is the dual basis then {fi ⊗ fj} is a basis of A∗ ⊗A∗. The coproduct ∆ on A∗ is
defined by

∆(f) =
∑
i,j

f(µ(ei ⊗ ej))fi ⊗ fj

In particular

∆(fk) =
∑
i,j

Ck
ijfi ⊗ fj

where Ck
ij are the structure constants of µ related to the basis {ei}. Then ∆ is the comultipli-

cation of a Gi-associative coalgebra.

3 The convolution product

Let us recall that if (A, µ) is associative K-algebra and (M,∆) a coassociative K-coalgebra (i.e.
a G1-coalgebra) then the convolution product

f ? g = µ ◦ λ2(f ⊗ g) ◦∆

provides Hom(M,A) with an associative algebra structure. This result can be extended to the
Gi-associative algebras and coalgebras. But we have to introduce the notion of G!

i-coalgebras
defined by the Koszul duality in the operads theory [2] and [3].
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3.1 The G!
i-algebras and coalgebras

Let Gi −Ass be the quadratic operad associated to the Gi-associative algebras. In [3] and [8],
we show that these operads satisfy the Koszul duality as soon as i = 1, 2, 3, 6. Let Gi −Ass! be
the dual operad. We will call a G!

i-algebra any algebra on Gi−Ass!. These algebras are defined
as follows:

Definition 5. For i ≥ 2, a G!
i-algebra is an associative algebra satisfying

• for i = 2: x1 · x2 · x3 = x2 · x1 · x3,
• for i = 3: x1 · x2 · x3 = x1 · x3 · x2,
• for i = 4: x1 · x2 · x3 = x3 · x2 · x1,
• for i = 5: x1 · x2 · x3 = x2 · x3 · x1 = x3 · x1 · x2,
• for i = 6: x1 · x2 · x3 = xσ(1) · xσ(2) · xσ(3) for all x1, x2, x3 and σ ∈ Σ3.

Definition 6. For i ≥ 2, a G!
i-coalgebra is a coassociative coalgebra satisfying

ΦM
σ ◦ (Id⊗∆) ◦∆ = (Id⊗∆) ◦∆ for every σ ∈ Gi

We will provide Hom(M,A) with a structure of Gi-associative algebra.

Proposition 8. Let (A, µ) be a Gi-associative algebra and (M,∆) a G!
i-coalgebra. Then the

algebra (Hom(M,A), ?) is a Gi-associative algebra where ? is the convolution product

f ? g = µ ◦ λ2(f ⊗ g) ◦∆

Proof. Let us compute the associator A(?) of the convolution product. Since

(f1 ? f2) ? f3 = µ ◦ λ2((f1 ? f2)⊗ f3) ◦∆
= µ ◦ λ2((µ ◦ λ2(f1 ⊗ f2) ◦∆)⊗ f3) ◦∆
= µ ◦ (µ⊗ Id) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (∆⊗ Id) ◦∆

we have

A(?)(f1 ⊗ f2 ⊗ f3) = µ ◦ (µ⊗ Id) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (∆⊗ Id) ◦∆
− µ ◦ (Id⊗ µ) ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (Id⊗∆) ◦∆

Therefore∑
σ∈Gi

(−1)ε(σ)A(?) ◦ ΦHom(M,A)
σ (f1 ⊗ f2 ⊗ f3)

= µ ◦ (µ⊗ Id) ◦ (
∑
σ∈Gi

λ3(ΦHom(M,A)
σ (f1 ⊗ f2 ⊗ f3))) ◦ (∆⊗ Id) ◦∆

− µ ◦ (Id⊗ µ) ◦ (
∑
σ∈Gi

λ3(ΦHom(M,A)
σ (f1 ⊗ f2 ⊗ f3))) ◦ (Id⊗∆) ◦∆

But

λ3(ΦHom(M,A)
σ (f1 ⊗ f2 ⊗ f3)) = ΦA

σ ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ ΦM
σ−1

This gives∑
σ∈Gi

(−1)ε(σ)A(?) ◦ ΦHom(M,A)
σ (f1 ⊗ f2 ⊗ f3)

= µ ◦ (µ⊗ Id) ◦ (
∑
σ∈Gi

ΦA
σ ◦ λ3(f1 ⊗ f2 ⊗ f3)) ◦ ΦM

σ−1 ◦ (∆⊗ Id) ◦∆

− µ ◦ (Id⊗ µ) ◦ (
∑
σ∈Gi

ΦA
σ ◦ λ3(f1 ⊗ f2 ⊗ f3)) ◦ ΦM

σ−1 ◦ (Id⊗∆) ◦∆
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Since ∆ is coassociative,

(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆

the G!
i-coalgebra structure implies

ΦM
σ ◦ (Id⊗∆) ◦∆ = ΦM

σ ◦ (∆⊗ Id) ◦∆ = (∆⊗ Id) ◦∆

Then ∑
σ∈Gi

(−1)ε(σ)A(?) ◦ ΦHom(M,A)
σ (f1 ⊗ f2 ⊗ f3)

= µ ◦ (µ⊗ Id) ◦ (
∑
σ∈Gi

ΦA
σ ◦ λ3(f1 ⊗ f2 ⊗ f3)) ◦ (∆⊗ Id) ◦∆

− µ ◦ (Id⊗ µ) ◦ (
∑
σ∈Gi

ΦA
σ ◦ λ3(f1 ⊗ f2 ⊗ f3)) ◦ (∆⊗ Id) ◦∆

=
∑
σ∈Gi

A(µ) ◦ ΦA
σ ◦ λ3(f1 ⊗ f2 ⊗ f3) ◦ (∆⊗ Id) ◦∆

= 0

This proves the proposition.

3.2 Lie-admissible bialgebras.

Definition 7. A Lie-admissible bialgebra is a triple (A, µ,∆) where (A, µ) is a Lie-admissible
algebra and (A,∆) a Lie-admissible coalgebra with a compatibility condition between ∆ and µ:

∆ ◦A(µ) ◦ ΦA
G6

= 0

Here we do not assume that the algebra and coalgebra are unitary and counitary. Among Lie-
admissible bialgebras, we shall have the class of Gi-bialgebras. As example, a compatibility
condition for pre-Lie bialgebras (that is G3-bialgebras) is given by

∆ ◦ µ = (Id⊗ µ) ◦ (∆⊗ Id) + (µ⊗ Id) ◦ ΦA
τ23 ◦ (∆⊗ Id)

4 Tensor product of Lie-admissible algebras and coalgebras

4.1 Tensor product of Gi and G!
i-algebras

We know that the tensor product of associative algebras can be provided with an associative
algebra structure. In other words, the category of associative algebras is monoidal and closed
for the tensor product. This is not true in general for other categories of Σ3-associative algebras.

Proposition 9. Let (A, µA) and (B, µB) be two Σ3-associative algebras respectively defined by
the relations A(µA) ◦ΦA

v = 0 and A(µB) ◦ΦB
w = 0. Then (A⊗K B, µA ⊗ µB) is a Σ3-associative

algebra if and only if A and B are associative algebras (i.e G1-associative algebras).

Proof. See [4].

But we have:

Theorem 10. If A is a Gi-associative algebra and B a G!
i-algebra (with the same index) then

A⊗ B can be provided with a Gi-algebra structure for i = 1, . . . , 6.



Lie-admissible coalgebras 27

Proof. Let us consider on A⊗ B the classical tensor product

µA ⊗ µB((a1 ⊗ b1)⊗ (a2 ⊗ b2)) = µA(a1 ⊗ a2)⊗ µB(b1 ⊗ b2)

To simplify, we denote by µ the product µA⊗µB. As B is an associative algebra, the associator
A(µ) satisfies

A(µ)((a1⊗ b1)⊗ (a2⊗ b2)⊗ (a3⊗ b3)) = A(µA)(a1⊗ a2⊗ a3)⊗µB ◦ (µB ⊗ Id)(b1⊗ b2⊗ b3)

Therefore∑
σ∈Gi

(− 1)ε(σ)A(µ) ◦ ΦA⊗B
σ ((a1 ⊗ b1)⊗ (a2 ⊗ b2)⊗ (a3 ⊗ b3))

=
∑
σ∈Gi

(−1)ε(σ)A(µA) ◦ ΦA
σ (a1 ⊗ a2 ⊗ a3)⊗ µB ◦ (µB ⊗ Id) ◦ ΦB

σ (b1 ⊗ b2 ⊗ b3)

But B a G!
i-algebra. Then

µB ◦ (µB ⊗ Id) ◦ ΦB
σ (b1 ⊗ b2 ⊗ b3) = µB ◦ (µB ⊗ Id)(b1 ⊗ b2 ⊗ b3)

for any σ ∈ Gi. So we obtain∑
σ∈Gi

(− 1)ε(σ)A(µ) ◦ ΦA⊗B
σ ((a1 ⊗ b1)⊗ (a2 ⊗ b2)⊗ (a3 ⊗ b3))

= (
∑
σ∈Gi

(−1)ε(σ)A(µA) ◦ ΦA
σ (a1 ⊗ a2 ⊗ a3))⊗ µB ◦ (µB ⊗ Id)(b1 ⊗ b2 ⊗ b3)

= 0

This proves the proposition.

4.2 Tensor product of Gi-coalgebras

Let (M1,∆1) and (M2,∆2) be two Lie-admissible coalgebras and ∆ the composite

M1 ⊗M2
∆1⊗∆2−−−−−→ (M1 ⊗M1)⊗ (M2 ⊗M2)

idM1
⊗τ⊗idM2−−−−−−−−−→ (M1 ⊗M2)⊗ (M1 ⊗M2)

If ∆1 is a comultiplication of Gi-coalgebra, what should be the structure of (M2,∆2) such that
∆ is a comultiplication of Gi-coalgebra too?

Proposition 11. Let (M1,∆1) be a Gi-coalgebra and (M2,∆2) a G!
i-coalgebra. Then (M1 ⊗

M2,∆) is provided with a Gi-coalgebra structure.

Proof. Using classical notations we have

Ã(∆)(v ⊗ w) = v1
1 ⊗ w1

1 ⊗ v2
1 ⊗ w2

1 ⊗ v2 ⊗ w2 − v1 ⊗ w1 ⊗ v1
2 ⊗ w1

2 ⊗ v2
2 ⊗ w2

2

Let χ : (M1 ⊗M2)⊗3 → M⊗3
1 ⊗M⊗3

2 be the isomorphism given by

χ(v1 ⊗ w1 ⊗ v2 ⊗ w2 ⊗ v3 ⊗ w3) = v1 ⊗ v2 ⊗ v3 ⊗ w1 ⊗ w2 ⊗ w3

Thus we obtain, from the hypothesis on ∆2

χ ◦ ΦM1⊗M2
Gi

◦ Ã(∆) = ΦM1
Gi

◦ Ã(∆1)⊗ (∆2 ⊗ Id) ◦∆2

which is zero because ∆1 is a Gi-comultiplication. As χ is an isomorphism, we deduce the
proposition.

Remark. In [5] we have generalized this study and defined for any quadratic operad P a
quadratic operad P̃ so that the tensor product of a P-algebra with a P̃-algebra is provided with
a P-algebra structure. In the previous case we have always P̃ = P !.
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