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Abstract

After introducing the concept of Lie-admissible coalgebras, we study a remarkable class
corresponding to coalgebras whose coassociator satisfies invariance conditions with respect
to the symmetric group X3. We then study the convolution and tensor products.

2000 MSC: 17D25, 16W30

1 Definitions and examples

In this work K indicates a field of characteristic zero. Let M be a K-vector space and A a
K-linear comultiplication map A : M — M ® M. The coassociator of A is denoted by

AN =(A®Id)oA—(Id® A)o A (1.1)

and the flip 7 : M®? — M®2 is the linear map defined by 7(x ® y) = y ® z.

Let X3 be the symmetric group of degree 3. We denote by c¢; and cp the 3-cycles of ¥3 and 7;;
the transposition echanging i and j. For every o € X3, we define a linear map ® : M®3 — M®3
by

q’i‘/(fm ® T2 ® T3) = To-1(1) @ To-1(2) @ To-1(3)
Definition 1. The pair (M, A) is a Lie-admissible coalgebra if the linear map Ay, : M — M@ M
defined by A; = A — 70 A is a Lie coalgebra comultiplication, that is, if A, satisfies
T<DZXL Z:—ﬂﬁL
A(AL) + @Y 0 A(AL) + @ 0 A(AL) =0
Recall that a multiplication p of a K-algebra (A, i) is Lie-admissible if its associator

A(p) = po (n@Id) — po (Id® p)
satisfies
Seeny (—1)9VA(p) o @4 =0

where €(0) is the sign of the permutation . This means that the algebra (A, [,]) whose product is
given by the bracket [z,y] = p(z,y) — pu(y, z) is a Lie algebra. We have a similar characterization
of a Lie-admissible comultiplication.

Proposition 1. A comultiplication A on M is a Lie-admissible comultiplication if and only if
A satisfies

> (1)) 0 A(A) =0 (1.2)
oEX3

where €(o) denotes the sign of the permutation o.

Proof. It is a direct consequence of Equation (1.1) because

A(toA)=((toA)®@Id)oTo A — (Id® (ToA))o(T0A)
— (@M, o A)(A)

T13

This proves the proposition. O
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Examples

e Every coassociative coalgebra is a Lie-admissible coalgebra.
e The comultiplication of a pre-Lie coalgebra (M, A) satisfies

AA) —dM 6 A(A) =0 (1.3)

T23
Since the composition of (1.3) by @é\f and @é\;[ gives respectively

Mo A(A) — @Y 0 A(A) =0

T13

and

Mo A(A) — @Y 0 A(A) =0

T12

we obtain Identity (1.2) by summation of (1.3) with these two equations and every pre-Lie
coalgebra is Lie-admissible.
In the following sections we generalize these examples.

2 (,;-coalgebras

An interesting class of Lie-admissible coalgebras is obtained by dualizing the G;-associative
algebras. These Lie-admissible algebras has been introduced in [9] and developed in [3]. Let us
point out these initially notations.

2.1 Xs-associative algebras

Let K [X3] be the group algebra associated to 33, where K is a field of characteristic zero. Every
v € K[X3] decomposes as follows:

v = a1id + asTi2 + a3Ti3 + a4z + ascy + ages

or simply

where a, € K. If A is a K-vector space, then we define from such a vector v the endomorphism
dA of A®3 by

ot = > a7
oEXS3

Consider the natural right action of ¥3 on K[X3]:

Y3 X K[Zg] — K[Zg], (O’, Zaiai) — Z az‘oﬁl o0;

The corresponding orbit of a vector v € K [¥3] is denoted by O(v) and generates a linear subspace
F, =K(O(v)) of K[X3]. It is an invariant subspace of K [X3]. Therefore, using Mashke’s theorem,
it is a direct product of irreducible invariant subspaces.

Let (A, 1) be a K-algebra with multiplication p and A(u) its associator.
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Definition 2. An algebra (A, u) is a X3-associative algebra if there exists v € K[X3], v # 0
such that A(u) o @7t = 0.

Proposition 2. Let v be in K[X3] such that dim F, = 1. Thenv =aV orv=aW with a € K
and the vectors V. and W are the following vectors:

V=1I1d— 712 —T13 — T3 +c1 +c2 (2.1)
W =Id+ 192+ 113+ 73 +c1 +co

The first case corresponds to the character of X3 given by the sign, the second corresponds
to the trivial case.

Every algebra (A, 1) whose associator satisfies
A(p) o ®( =0
is a Lie-admissible algebra. Likewise an algebra (A, ;1) whose associator satisfies
A(p) o By = 0

is 3-power associative, that is, it satisfies A(u)(z,z,z) = 0 for every x € A.

2.2 (;-associative algebras

The class of Y3-associative Lie-admissible algebras contains interesting subclasses associated to
the subgroups G; of ¥3 that we naturally call G;-associative algebras. Let us introduce some
notations. Consider the subgroups of Xj:

Gl = {Id}, GQ = {Id,Tlg}, Gg = {Id, 7’23}
Gy ={ld, 113}, Gs={Id,c1,c2} = A3, G = X3

Definition 3. Let G; be a subgroup of ¥3. The algebra (A, ) is Gj-associative if

Y (D)Ao@ =0 (2.3)

ceG;
Proposition 3. Every G;-associative algebra is a X3-associative algebra.

Proof. Every subgroup G; of 33 corresponds to an invariant linear space F'(v;) generated by
a single vector v; € K[X3]. More precisely we consider vy = Id, vo = Id — 712, v3 = Id — To3,
vg =1Id— T3, v5 = Id + c1 + c2 and vg = V that we have defined in (2.1). O

Proposition 4. Fvery G;-associative algebra is a Lie-admissible algebra.

Proof. The vector V belongs to the orbits O(v;) for every v;. Thus, if u is a G;-associative
product, it also satisfies

A(n) 0 @7 =0
and p is a Lie-admissible multiplication. O
We deduce the following type of Lie-admissible algebras:

1. A Gi-associative algebra is an associative algebra.
2. A Gs-associative algebra is a Vinberg algebra. If A is finite-dimensional, the associated
Lie algebra is provided with an affine structure.
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3. A G-associative algebra is a pre-Lie algebra.
4. If (A, ) is Gs-associative then p satisfies

(X-Y)Z-X-(Y-2)=(Z-Y)- X-Z-(Y-X)

with X - Y = u(X,Y).
5. If (A, ) is Gs-associative then p satisfies the generalized Jacobi condition :

(X-Y)Z+(Y -2) X+(Z-X)Y=X-(Y-2)+Y - (Z-X)+Z-(X-Y)

with X -Y = u(X,Y). Moreover if the product is skew-symmetric, then it is a Lie algebra
bracket.
6. A Gg-associative algebra is a Lie-admissible algebra.

2.3 (j-coalgebras
Dualizing the formula (2.3) we obtain the notion of G;-coalgebra.

Definition 4. A G;-coalgebra is a K-vector space M provided with a comultiplication A satis-
fying
> (=D)MR) 0 A(A) =0

oeG;

Remark. We can present an equivalent and axiomatic definition of the notion of G;-associative
algebra. A Gj-associative algebra is (A, u,n, G;) where A is a vector space, G; a subgroup of
Mg, p: A® A — Aand n: K — A are linear maps satisfying the following axioms:

1. (Gj-ass): The square

ApAed L20% 44
(Id®u)cll Ml
A A —F— A
commutes, where (Id ® ), is the linear mapping defined by:
(Id@p)g, = > (1) (Id@ p)o &y
o€G;
If we impose that the algebra is unitary we have to add the following axiom:

2. (Un) The following diagram is commutative:

®1d 1d®
KA S A0 A<—" A0 K

b

A

The axiom (Gj-ass) expresses that the multiplication p is Gj-associative whereas the axiom
(Un) means that the element n(1) of A is a left and right unit for . We want to dualize the
previous diagrams to obtain the notions of corresponding coalgebras. Let A be a comultiplication
A: M — M ® M. We define the bilinear map

Gio(A®Id): M® — M®3
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by

Gio(A®Id) =Y (-1)oto (A®Id)
oeG;

A Gj-coalgebra is a vector space M provided with a comultiplication A : M — M ® M and a
counit € : M — K such that

1. (Gj-ass co) The following square is commutative:

M 4, Mo M
Al lGio(Id(XJA)
Mo M SRS o e M

If we suppose moreover that the coalgebra is counitary we have to add the following axiom:
2. (Coun) The following diagram is commutative:

KoM <2 oM yok

\AT /
M
A morphism of G;-coalgebras
f:(M,Ae,Gy) — (M, A €,G))
is a linear map from M to M’ such that
(fofloA=Aof and e=¢of
Proposition 5. Fvery G;-coalgebra is a Lie-admissible coalgebra.

Proof. The Lie-admissible coalgebras are given by the relation

(1) @aM 0 A(A) = DY 0 A(A) =0

oEX3

Since for every v; = > (=1)()g we have V € F,,, we deduce the proposition. O

oeG;

2.4 The dual space of a G;-coalgebra

For any natural number n and any K-vector spaces E and F', we denote by
A i Hom(E, F)®" — Hom(E®", F®")

the natural embedding
(1@ @ fa)@1 @ @an) = fi(21) @ ... @ folwn)

Proposition 6. The dual space of a G;-coalgebra is provided with a structure of G;-associative
algebra.
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Proof. Let (M, A) be a G;-coalgebra. We consider the multiplication on the dual vector space
M* of M defined by u = A* o Ag. It provides M* with a G;-associative algebra structure. In
fact we have

p(f1 @ f2) = pr o A2(f1 ® f2) 0o A (2.4)
for all f1, fo € M* where ug is the multiplication in K. Equation (2.4) becomes:

po(p@Id)(fi® fa® f3) = pr o (A2(u(fi @ fo) ® f3)) 0 A
= px o A2((ux 0 A2(f1 ® f2) 0 A) ® f3) 0 A
= px o (ux ®@ Id) o A3(f1 ® fo® f3) o (A@ Id) o A

The associator A(u) satisfies
A(p) =+ px o (px ® Id) 0 X3(f1 ® fo® f3) o (A® Id)o A
—pro(Id®@ k) o X3(f1 ® fo® f3) o (Id® A)o A
and using associativity and commutativity of the multiplication in K, we obtain
A(p) = pr o (px @ Id) o A3(f1 ® fo @ f3) o (A®@Id) o A — (Id® A) 0 A)
Thus

S (D) A) 0 B = o (ux © Id) 0 \s(f1 ® fo @ f3) 0 (Gio (A®Id)o A
oeG;

—Gio(Id® A)oA)
=0
and (M*, ) is a G;-associative algebra. O

Proposition 7. The dual vector space of a finite dimensional G;-associative algebra has a G-
coalgebra structure.

Proof. Let A be a finite dimensional G;-associative algebra and let {e;,i = 1,...,n} be a basis
of A. If {f;} is the dual basis then {f; ® f;} is a basis of A* ® A*. The coproduct A on A* is
defined by

A(f) =D flules @ e))fi @ f;
2%

In particular

Afr) =D Chfi® fj
1,5

where ij are the structure constants of u related to the basis {e;}. Then A is the comultipli-
cation of a Gj-associative coalgebra. O

3 The convolution product

Let us recall that if (A, u) is associative K-algebra and (M, A) a coassociative K-coalgebra (i.e.
a G1-coalgebra) then the convolution product

frxg=poX(f®g)oA

provides Hom(M, A) with an associative algebra structure. This result can be extended to the
G-associative algebras and coalgebras. But we have to introduce the notion of Gé—coalgebras
defined by the Koszul duality in the operads theory [2] and [3].
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3.1 The Gi-algebras and coalgebras

Let G; — Ass be the quadratic operad associated to the G;-associative algebras. In [3] and [§],
we show that these operads satisfy the Koszul duality as soon as i = 1,2, 3,6. Let G; — Ass' be
the dual operad. We will call a Gi—algebra any algebra on G; — Ass'. These algebras are defined
as follows:

Definition 5.

for i = 2:

for i = 3:
for ¢ = 4:
for 1 = 5:
for ¢ = 6:

Definition 6.

For:> 2 a Gé—algebra is an associative algebra satisfying

x1
z1
x1
x1
z1

2 -
 Zg -
2 -
 Zg-

.:L'Z

T3 =2 T1" T3,
r3 =T1- X3 T2,
T3 = T3-T2 " T1,
T3 =22 T3 °T1 = XT3 X1 T2,

T3 = Ty(1) " To(2) " To(3) for all x1, 29,23 and o € X3.

For:> 2 a G!i—coalgebra is a coassociative coalgebra satisfying

dMo(Id® A)oA=(Id® A)oA forevery o€ G;

We will provide Hom(M, A) with a structure of G;-associative algebra.

Proposition 8. Let (A, 1) be a Gj-associative algebra and (M,A) a G}-coalgebra. Then the
algebra (Hom(M, A),*) is a Gi-associative algebra where x is the convolution product

frg=nod(f@g)oA
Proof. Let us compute the associator A(x) of the convolution product. Since
(fi*fo) * fs=poXa((fi*f2) ® f3) 0 A

=poX((Lor(fi®f2)oA)® f3)0 A
:Mo(u@)fd)O)\g(fl®f2®f3)o(A®Id)oA

we have

AR (1 ® f2® f3) = po (p@Id) o As(fi ® fo @ f3) o (A®Id)o A

Therefore

Y (D)AG) 0 oM (fr @ fo © f)

But

oeG;

—po(Id®@pu)oA3(fi® f2® f3) o (ld® A)o A

=po (n@ld)o (D N(@F"MA(fi® fr@ f3)) o (A® Id)o A
o€,

—po (Id®p)o (Y A(@HmMA(f1 @ fr® f3)) o (Id® A) o A
oeG;

Ag(q)fom(M,A)(fl ® f2 ® f3)) = CDf o )\3(f1 & f2 ® f3) 0 (I)g{l

This gives
3 (1) Ax) 0 @TMAN (£ @ o @ f3)

oeG;

=po(u®Id)o(d Tros(fi®fa® f3) o) o (A®Id)oA
geG;

—po(Id@p)o (Y Dlods(fi®f2® f3)) 0@ o(IdmA)oA
oeG;
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Since A is coassociative,

(A®Id)ocA=(Id® A)o A
the G'-coalgebra structure implies

IMo(Id@ A)oA=dMo(A@Id)o A= (A®Id)oA
Then

Y (D)AG) 0 oM (fr @ fo © f)

oeG;

=po(u@ld)o(d ®rods(fi®fa® fs)o(A®Id)oA
g€eG;

—po(Id@p)o (Y lod3(fi® f2® f3))o(A®Id)oA
oeG;

=3 A o ®L o Xs(fi® fo® f3)o (A Id)o A
oeqG;

=0

This proves the proposition. O

3.2 Lie-admissible bialgebras.

Definition 7. A Lie-admissible bialgebra is a triple (A, u, A) where (A, u) is a Lie-admissible
algebra and (A, A) a Lie-admissible coalgebra with a compatibility condition between A and p:

Ao A(u) o &g, =0

Here we do not assume that the algebra and coalgebra are unitary and counitary. Among Lie-
admissible bialgebras, we shall have the class of G;-bialgebras. As example, a compatibility
condition for pre-Lie bialgebras (that is Gs-bialgebras) is given by

Aop=(Idop)o(A®Id)+ (p®Id)odd o(A®Id)

T23

4 Tensor product of Lie-admissible algebras and coalgebras

4.1 Tensor product of G; and G}-algebras

We know that the tensor product of associative algebras can be provided with an associative
algebra structure. In other words, the category of associative algebras is monoidal and closed
for the tensor product. This is not true in general for other categories of Ys-associative algebras.

Proposition 9. Let (A, ua) and (B, up) be two Y3-associative algebras respectively defined by
the relations A(pa) o ®A =0 and A(ug) o ®B =0. Then (A®x B, ua ® pp) is a X3-associative
algebra if and only if A and B are associative algebras (i.e G1-associative algebras).

Proof. See [4]. O
But we have:

Theorem 10. If A is a G;-associative algebra and B a G;—algebm (with the same index) then
AR B can be provided with a G;-algebra structure fori=1,...,6.
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Proof. Let us consider on A ® B the classical tensor product

pa®@ pp((ar ®b1) @ (a2 ® b)) = palar ® az) ® pp(by @ ba)

To simplify, we denote by u the product pus ® pp. As B is an associative algebra, the associator
A(p) satisfies

A(p)((a1 @ b1) ® (a2 @ b2) @ (a3 @b3)) = A(pa)(a1 ® a2 ® az) @ pp o (up @ 1d)(by @ by @ b3)

Therefore

(= DD A() 0 @AB (a1 @ br) ® (a2 ® by) ® (az @ bs))
oel;

= Z D) A1) 0 ®2 (a1 @ ag ® az) @ pp o (up @ Id) 0 BE(by @ by @ b)
o€eG;

But B a Gi—algebra. Then
pp o (up ® Id) o ®E(by @ by @ b3) = up o (up @ Id)(b1 @ by @ b3)

for any o € G;. So we obtain

> (=DM A() 0 21F (a1 @ by) @ (a9 ® be) @ (a3 @ bg))

oeG;
= () (-1 A(pa) 0 @ a1 ® a2 @ ag)) ® pp o (up @ Id)(by @ by ® b)
ce@G;
=0
This proves the proposition. ]

4.2 Tensor product of G;-coalgebras
Let (My, A1) and (My, Ag) be two Lie-admissible coalgebras and A the composite

A1®A2

id T®1id
My ® My 21922 (M @ My) @ (My @ My) —2 =70,

(M1 ® MQ) ® (Ml & MQ)

If A; is a comultiplication of G;-coalgebra, what should be the structure of (Ma, Ay) such that
A is a comultiplication of G;-coalgebra too?

Proposition 11. Let (M, A1) be a Gi-coalgebra and (Ma, As) a G}-coalgebra. Then (M; ®
My, A) is provided with a G;-coalgebra structure.

Proof. Using classical notations we have
AD) (v w) =vl @uwl @v? @wl@v @ ws — v ® w ® v ®wl @ vE®ws
Let x : (M ® M3)®3 — M®3 @ M$® be the isomorphism given by
X(v1 @ w1 ® Ve ®wy ® vy @ ws) =] Uy ®uz®w ®wy @ ws
Thus we obtain, from the hypothesis on A,
0 DM o A(A) = Y1 0 A(A1) ® (Mg ® Id) 0 Ay

which is zero because Aj is a Gj-comultiplication. As y is an isomorphism, we deduce the
proposition. ]

Remark. In [5] we have generalized this study and defined for any quadratic operad P a
quadratic operad P so that the tensor product of a P- algebra with a P- algebra is provided with
a P-algebra structure. In the previous case we have always P = P".
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