
Volume 6 • Issue 1 • 1000133
Human Genet Embryol
ISSN: 2161-0436 HGE, an open access journal 

Open AccessReview Article

Human Genetics & EmbryologyHu
m

an
Genetics & Embryology

ISSN: 2161-0436

Fang et al., Human Genet Embryol 2016, 6:1 
DOI: 10.4172/2161-0436.1000133

Literature Reviews on Methods for Rare Variant Association Studies
Shurong Fang1*, Shuanglin Zhang2 and Qiuying Sha2

1Department of Mathematics, Fairfield University, Fairfield, CT 06824, USA
2Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA

*Corresponding author: Shurong Fang, Department of Mathematics,
Fairfield University, Fairfield, CT 06824, USA, Tel: (203) 254-4000;
E-mail: sfang@fairfield.edu

Received February 01, 2016; Accepted February 16, 2016; Published February 18, 
2016

Citation: Fang S, Zhang S, Sha Q (2016) Literature Reviews on Methods for Rare 
Variant Association Studies. Human Genet Embryol 6: 133. doi:10.4172/2161-
0436.1000133

Copyright: © 2015 Fang S, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
The widespread availability of genome sequencing data has yielded different rare variant association methods 

in population-based or family-based designs. However, it is challenging to know which method is appropriate in 
practice. Our purpose of this paper is to provide a general review of the literature for rare variant association studies 
and suggestions on future research directions. This paper discusses methods for recent rare variant association 
studies in three categories. The first two categories are for population-based designs, with/without considering the 
direction of the effects of causal rare variants. In the third category, methods for family-based designs are concluded.

Keywords: Family-based design; Population-based design; Quanti-
tative traits; Qualitative traits; Rare variants 

Introduction 
Genome-wide association studies (GWAS) have successfully 

identified a large number of common variants underlying various 
complex diseases [1,2]. However, current studies suggest that these 
common variants identified by GWAS only account for a small fraction 
of disease heritability [2,3]. It is widely recognized that rare variants are 
considered to be responsible for the missing heritability [2-4]. Next-
generation DNA sequencing technologies allow sequencing of parts of 
the genome for a large number of individuals and the whole genome 
for a set of individuals, and thus make directly testing rare variants 
feasible [3,5-9]. Existing single-marker tests used to detect common 
variants on complex diseases may not be suitable for detecting rare 
variants due to the allelic heterogeneity and low frequency of rare 
variants [10]. Several methods using the strategy of collapsing a group 
of rare variants in a gene or a pathway have been proposed recently. 
These methods include the cohort allelic sums test (CAST) method 
[11], the combined multivariate and collapsing (CMC) method 
[10], the weighted sum (WS) method [12], the variable minor allele 
frequency threshold (VT) method [13], and the cumulative minor-
allele test (CMAT) method [14], among others. All the above methods 
assume that all causal variants are risk to diseases, while some causal 
variants are protective to some diseases [15,16]. More recently, several 
methods considering the direction of the effects of association have 
been proposed, including the C-alpha test [17], the sequence kernel 
association test (SKAT) [18], the adaptive sum (aSum) test [19], 
and the step-up method [16], etc. All aforementioned methods are 
only applicable to population-based designs with unrelated samples, 
whereas family-based designs have been shown to improve power to 
detect causal rare variants [4,20]. In addition, population-based tests 
can be seriously confounded by population stratification in rare variant 
association studies while family-based tests are robust to population 
stratification. So far, only a few family-based rare variant association 
methods have been developed, including the sib-pair and odds ratio 
weighted sum statistics (SPWSS, ORWSS) [20], two adaptive weighting 
methods (AW-FBAT, AW-Joint) [21], the FBAT-based test (FBAT-T) 
[22], the TOW for a family-based design (TOW-F) [23], and the TOW 
for sib-pair designs (TOW-sib) [24], among others. In this article, we 
will provide a general review of the literature for rare variant association 
studies. We summarize and discuss the methods for recent rare variant 
association studies in three categories. In the first two categories, we 
provide the summary on methods in population-based designs, with 
or without considering the direction of effects of causal rare variants. 
In the third category, methods in family-based designs are concluded. 

Materials and Methods
Category 1: Methods not robust to the direction of effects of 
causal variants in population-based designs 

Recently, the strategy of collapsing a group of rare variants, in a 
gene or a pathway, has been proposed. Morgenthaler and Thilly [11] 
developed the cohort allelic sums test (CAST) which collapses rare 
variants and then compares collapsed allele frequencies in cases and 
controls. CAST was a milestone of rare variant association studies and 
started a sequence of collapsing methods in later research. Li and Leal 
[10] extended the CAST to come up with the combined multivariate 
and collapsing (CMC) method in which rare variants are collapsed 
within different subgroups and the information of both collapsed 
rare variants and common variants is used in the association test. 
Both CAST and CMC need to choose a fixed minor allele frequency 
(MAF) threshold to define common and rare variants. Madsen and 
Browning [12] proposed the weighted sum (WS) method where 
both common and rare variants can be included, but the variants are 
weighted according to their allele frequencies. Thus, common variants 
are giving small weights while rare variants are given large weights. 
Price et al. [13] proposed the variable minor allele frequency threshold 
(VT) method which tests the association using the ‘optimal’ MAF 
threshold. Zawistowski et al. [14] developed the cumulative minor-
allele test (CMAT) which is based on the summation of minor allele 
counts across all sites for cases and controls. All these methods are 
burden tests and essentially test the effect of a weighted combination 
of variants in a genomic region. Let ikx  denote the genotype (number
of minor alleles) of the thi  individual at the thk  variant, and kw
denote the weight for the thk  variant. The aforementioned methods
are essentially testing the effect of a weighted combination of variants, 
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i k ikk
X w x= ∑  or its function with different definitions of kw

[25]. More specifically, CAST, CMC, VT, and CMAT set 1kw = .

CMAT tests the effect of iX  while CAST, CMC, and VT test the effect

of { }1iI X ≥ , where { }I   is an indicator function. WS tests the

effect of iX  with kw  to be the inverse square root of the expected
variance based on allele frequencies in the controls. These collapsing 
methods are more powerful than single-variant tests. However, 
they assume that all causal variants are risk to diseases, while causal 
variants may be protective to some diseases [15,16]. When both risk 
and protective variants are present, the above mentioned methods are 
underpowered because the opposite association effects will counteract 
each other [26].

Category 2: Methods robust to the direction of the effects of 
causal variants for population-based designs

More recently, several methods that are robust to the direction 
of the effects of causal variants have been proposed. Neale et al. [17] 
developed a C-alpha test, comparing the expected variance to the actual 
variance of the distribution of rare variants in cases versus controls. Wu 
et al. [18] introduced the sequence kernel association test (SKAT), a 
variance-component score test, testing for association between variants 
in a region (both common and rare) while adjusting for covariates. 
Both C-alpha test and SKAT are essentially testing the variance of the 
effects rather than the mean. Han and Pan [19] proposed the data-
adaptive Sum (aSum) test, which incorporates the signs of the observed 

effects of causal variants into a burden test. It sets ˆ( )k kw sign β=
, where ˆ

kβ  is an estimated coefficient of the thk  variant based on

the marginal logistic linear model for qualitative traits. Hoffmann et 
al. [16] developed the step-up method, where weights can incorporate 
MAF, the direction of the effects and the threshold all in a single 

analysis. It sets k k k kw a s v= , where ka  is a continuous weight

(e.g., to incorporate allele frequencies); 
ks  determines the direction

of the variant effect; kv  is an indicator variable determining whether
the thk  variant should even be in the model at all. Zhang et al. [27]

proposed two grouping strategies (GS) based on WS and used data 
to decide the direction of the effects of causal variant. Also based on 
WS, Ionita-Laza et al. [28] proposed the replication-based (R) method, 
where two one-sided replication-based statistics are applied to risk 
variants and protective variants, respectively. Sha et al. [29] proposed 
an adaptive clustering method and adaptive weighting method (AC/
AW) to detect rare variant association in the presence of neutral 
and/or protective variants. Both AC/AW methods are applicable to 
quantitative and qualitative traits, and have clear advantages from 
power to computational efficiency comparing with existing collapsing 
methods and data-driven methods that allow neutral and protective 
variants. The above methods in Category 2 are also essentially testing 
the effect of a weighted combination of variants. Thus, how to choose 
appropriate weights is critical to the performance of these methods. 
Lin and Tang [30] derived theoretically optimal procedures for 
combining rare mutations and applied a general score-based test 
(GS) to population-based samples based on regression models. The 
proposed test statistic is optimal if kw  is proportional to the set of
regression coefficients. Sha et al. [25] proposed a Test for testing the 
effect of an Optimally Weighted combination of rare variants (TOW). 
The optimal weights are analytically derived and calculated from 

genotypes and traits in a population-based design. Furthermore, 
TOW can be extended to a Variable Weight TOW (VW-TOW) [25] to 
include both rare and common variants. Liu et al. [31] applied meta-
analysis of single variant association tests, burden tests, and variable 
threshold tests and developed RAREMETAL, which could include 
covariates for both quantitative and qualitative traits. Zeng et al. [32] 
proposed the likelihood ratio test (LRT) and restricted likelihood ratio 
test (ReLRT) to test the association of rare variants based on the linear 
mixed effects model. Like SKAT, LRT and ReLRT examine variance 
component in the mixed model. However, LRT and ReLRT estimate 
both the null and alternative models, and provide an indirect estimate 
of heritability explained by rare variants. The disadvantage is that they 
are computationally time-consuming. Ladouceur et al. [33] suggested 
that the power of currently proposed statistical methods depends 
strongly on the underlying hypotheses of the relationship of traits with 
proportions of causal variants or/and the direction of the associations. 
The methods in the first category are more powerful than most of the 
methods in the second category when all or almost all of rare variants 
in a region are causal and in the same direction of association, while 
methods in the second category outperform those in the first category 
when there are both risk and protective variants, and more generally, 
when a substantial portion of the variants is neutral. How to select an 
appropriate method when there is limited biological knowledge in 
practice? It was recommended that both tests in the first and second 
categories should be used in the settings where prior biological 
knowledge is limited [34]. Lee et al. [35] combined a burden test and 
SKAT into the optimal sequence kernel association test (SKAT-O). 
Specifically, SKAT-O automatically behaves like a burden test when 
the burden test is more powerful than SKAT, and works as SKAT when 
SKAT is more powerful. Derkach et al. [36] developed the Fisher’s 
method to combine p-values from two or more complementary tests 
(Fisher-CT). When most causal variants have the same direction of 
association, Fisher-CT consistently outperforms SKAT-O, and is 
often considerably better than burden tests in the first category and 
non-burden tests in the second category. Sha and Zhang [37] proposed 
an optimal combination of single-variant tests (OCST) by combining 
information from the tests of the three classes: only risk variants, both 
risk and protective variants and only protective variants. Under some 
scenarios, OCST is consistently more powerful than Fisher-CT and 
Fisher-CT is consistently more powerful than SKAT-O. Besides studies 
for qualitative and quantitative traits, Lin and Tang [30] introduced a 
score test for potentially censored age-at-onset traits. Wang et al. [38] 
conducted longitudinal data analysis based on TOW and proposed 
L-TOW to detect rare variant association in population-based designs, 
since incorporating traits at multiple-time points may increase the 
statistical power by providing more information than only using the 
trait at a single-time point.

Category 3: Methods for family-based designs

For any type of study design, the statistical power will be improved 
when rare variants are enriched in samples. If one parent carries a 
copy of a rare allele, half of the offspring are expected to carry it, thus, 
variants that are rare in the general population could be common in 
certain families [39]. Therefore, family-based methods may improve 
power to detect causal rare variants [20,40]. Moreover, for rare variant 
associations, population-based association tests can be seriously 
confounded by population stratification while family-based association 
tests are robust to population stratification. However, there are only a 
few methods for family-based designs available so far.

Qualitative traits: Zhu et al. [4] proposed a two-stage haplotype-
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based (HB) method to identify casual rare haplotypes for qualitative 
traits. First, a set of risk haplotypes is detected using a small proportion 
of the sample. Then association with that set of identified haplotypes 
is tested in a larger case-control sample. Feng et al. [20] introduced 
a sib-pair weighted sum statistic (SPWSS) to detect both rare and 
common causal variants in a gene or a genomic region. SPWSS uses 
either affected or discordant sib-pairs in sequencing or genome-wide 
association data, is not affected by the directionality of the effect of 
causal variants, and does not require choosing a MAF threshold. Zhu 
and Xiong [40] transformed a population-based test to the family-
based test by calculating the covariance matrix of the functional 
principal-component scores, and developed the family-based 
functional principal-component analysis (FPCA) for qualitative traits. 
De et al. [22] proposed a method (FBAT-T) in a family-based design 
by extending the traditional single-SNP Family-Based Association 
Test (FBAT). Sha et al. [26] proposed a test for Testing the Optimally 
Weighted combination of variants based on data of Parents and 
Affected Children (TOW-PAC). TOW-PAC tests the combined 
effect of rare and common variants in a genomic region by using 
optimal data-driven weights. Later, He et al. [41] incorporated rare-
variant association analysis into the transmission disequilibrium test 
(TDT) framework [42] to analyze trio sequence data and proposed 
Rare Variant Extensions of the Transmission Disequilibrium Test 
(RV-TDT). Choi et al. [43] proposed a FAmily-based Rare Variant 
Association Test (FARVAT) for extended families. It is based on 
the quasi-likelihood of whole families. Epstein et al. [44] proposed a 
framework for rare variants in affected sib-ships (SIB) based on the 
logic that rare susceptibility variants should be found more often on 
regions shared identical by descent by affected siblings. They derived 
both burden and variance-component tests under the SIB framework. 
SIB does not require variant information from unaffected relatives. 
Sha and Zhang [24] tested association of an optimally weighted 
combination of variants for affected sib-pairs (TOW-sib), based on 
either unrelated individuals or affected sib-pairs.

Quantitative traits: Lin and Tang [30] used generalized linear 
mixed models to capture the dependence of trait and a score test 
statistic in a family-based design (GS-F). GS-F is applicable to both 
quantitative and qualitative traits and allows for covariates. Liu and Leal 
[45] proposed a unified framework of modeling extreme trait genetic 
associations (MEGA) for direct quantitative trait loci (QTL) mapping. 
The framework is based on the mixed effect model, which generalizes 
the Fisher’s biometrical model [46], coupled with a likelihood method. 
The QTL effects are modeled as fixed effect to facilitate joint analysis 
of multiple rare variants. Using MEGA and appropriate permutation 
algorithms, many rare variant tests for unrelated individuals can be 
extended to the tests for family data. Fang et al. [21] proposed two 
adaptive weighting methods, Adaptive Weighting Family-Based 
Association Test (AW-FBAT) and Adaptive Weighting Joint Test 
(AW-Joint). AW-FBAT uses between-family information to calculate 
adaptive weights and uses within-family information to test for 
association, while AW-Joint uses joint information of between-family 
and within-family components to calculate the adaptive weights and 
to test for association. Fang et al. [23] extended TOW for unrelated 
individuals to TOW-F, TOW for Family-based data. TOW-F is robust 
to population stratifications in a wide range of population structures. 
Feng et al. [47] provided meta-analysis of rare variants in families 
(META-F) which applied to both single-variant and gene-level 
association tests. 

Discussion and Future Directions
As we can see in the previous section, many statistical methods 

in population-based designs for testing associations of rare variants 
have been developed. The summary of the currently popular methods 
is shown in Table 1. Based on the objective and prior biological 
knowledge of a project in practice, researchers could narrow their 
choices and select appropriate methods. For rare variant associations, 
population-based association tests can be seriously confounded by 
population stratification, since the spectrum of rare variation can be 
very different in diverse populations. Current studies show that family-

Method Direction Quantitative traits Qualitative traits
Include 

common 
variants

Proportion of 
neutral variants Covariates Population 

stratification

CAST N N Y N Y N N
CMC N N Y Y N N N
WS N N Y Y N N N
VT N Y Y N N N N

CMAT N N Y N Y Y Y
C- Y N Y N Y N N

SKAT Y Y Y Y N Y Y
aSum Y N Y Y N N N

step-up Y Y Y Y N N N
AC/AW Y Y Y Y Y N Y
TOW Y Y Y N Y Y Y

VW-TOW Y Y Y Y Y Y Y
R Y N Y N Y N N

GS Y Y Y Y N Y Y
SKAT-O Y Y Y N Y Y Y

Fisher-CT Y Y Y N Y Y N
OCST Y Y Y N Y Y N
LRT Y Y N N N Y Y

ReLRT Y Y N N N Y Y
RAREMETAL Y Y Y Y N Y Y

Table 1: Summary of statistical methods for population-based designs.
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based association tests can be robust to population stratification. In 
family-based data, association information can be partitioned into 
between-family and within-family information [21]. Within-family 
information is robust to population stratification while between-
family information can be confounded by population stratification. In 
addition, from the statistical power point of view, the power under any 
type of study design can be improved when rare variants are enriched in 
the samples [20,40]. Several popular statistical methods in family-based 
designs are summarized in Table 2 for researchers to compare. With 
the rapid advance of biotechnology, new biological knowledge will 
become available, and next-generation DNA sequencing technologies 
will allow sequencing the whole genome. It is significantly important to 
incorporate this new information to improve statistical power to detect 
rare variants associated with complex diseases. Continued development 
of novel statistical methods for identifying rare disease susceptibility 
variants is needed for population-based designs, and especially for 
family-based designs. We hope this paper can help researchers with 
practical problems on rare variants. Most of the methods summarized 
in this paper considered a single trait. However, a gene often affects 
multiple traits. Thus, analysis of multiple traits simultaneously will 
increase power to detect rare variant association. When the same 
variants affect multiple traits, trait values for an individual will tend 
to be correlated. Very few methods for common variants association 
studies have been proposed [48,49]. However, this field is still under 
way and challenging, and needs our special attention. Meta-analysis 
has facilitated many discoveries in common variant association studies. 
It is essential for detecting associations with rare variants too, because 
meta-analysis can increase the sample size, especially for rare variant 
association studies. To better explore the relationship between rare 
variants and complex diseases, it is urgent and essential to develop 
efficient multiple-trait methods as well as meta-analysis for rare 
variants studies. 
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