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Abstract

Problem: Low MW peptides many of them N-substituted, have growth inhibitory effects. Are the peptide levels
different in malignant cells from normal cells?

Method: Deprimerones dissociated from DNA at pH 9.5 was measured in normal and malignant cells. The level
of Low MW compounds was also compared to large MW compounds [ratios] after gel filtration.

Result: Chalones and some other low MW compounds were not as in normal tissues and cells found in these.
However, these peptides could be found in the incubation fluid or ascites. DNA bound peptides were decreased in
malignant cells.

Keywords: Peptide; Transcription; Inhibition; Differentiation;
Carcinogenesis

Introduction
Chalones [1] are endogenous growth inhibiting factors with

reversible and relative tissue specific effects. Purification however, was
initially not successful, and we now know that this was due to low MW
peptides binding to different protein molecules and other
macromolecules depending on concentration of salts, pH etc . Peptides
easily bind to larger molecules and each other [2]. Deprimerones also
peptides, bind to DNA [3]. Chalones and deprimerones are all N-
substituted (Table 1). They often have bell shaped [hormetic] dose
responses and demand extensive testing over a large concentration
range. Optimal effects are often in the nano-to pico-molar range. The
Chalones and deprimerones are externalized or lost from the cells in
malignant states [4-6] and can be purified from ascites [6].

Properties of low MW mitosis inhibitory peptides
A: They are apparently phosphorylated by protein kinase CKII and

can translocate to the nucleus where they bind to DNA [11-13] but not
by a covalent bond [14].

B: These peptides cause differentiation when inhibiting mitosis
[15-16], which is the opposite of the malignant process.

C: The peptides apparently act by controlling transcription
[3,13,17-19].

D: The chalones show bell shaped dose responses with optimal
effect from 10-9 to 10-14 M [1]. This phenomenon is known as
hormesis.

E: Cyclic AMP is involved since propranolol modifies the effects of
epidermal penta-peptide [20]. The colonic tri-peptide also decreases
non-tumorigenic colon cells levels of cyclic AMP [21].

F: The epidermal peptide and the hemo- regulating peptide change
RNA profiles in target cells [22]. Microarray of oncogenes ± specific
peptide to cultured T cells or colon carcinoma cells [HT29] studied
with real time PCR [23-25] points to similar mechanisms. The
epidermal pentapeptide inhibits the oncogene c-Fos, ki-ras and Neu
m-RNA formation in TC3H10 cells [23]. The Colon tri- peptide
caused a considerable increase in Fos antigen [24].

G: Phosphorylation also make the peptides more resistant to
peptidase break down [12].

H: The binding to DNA seems to be divalent cation [Mg2+, Fe2+,
Cu2+] dependent [18].

I: Different growth inhibitors impede metastases and growth of
subcutaneously injected tumors [26-29] and most in the slowly
growing clones. The Colon tri-peptide also inhibits cholic acid
induced hyperplasia and hypertrophy [30] as well as
Trimethylhydrazine induced hyperplasia [31].

J: The peptides “leak out” or are transported out to the medium
from malignant cells or tissues compared to normal cells and tissues
[4,5]. For instance the mammary carcinoma cell inhibitor could be
found in the ascites fluid [4-6].

K: Combining the Colon derived tri-peptide with Vitamin A [also a
differentiation inducing factor] enhances the effect of the peptide
against HT29 considerably [26]. The cancer cells were injected in
athymic mice [26] with inhibition of more than 90%.

Epidermal cells PyroE-E-D-S-GOH and PyroE-GOH 1

Colon Endothelial cells PyroE-H-GOH 1

Hepatocytes PyroE-Q-S-G-DNH2, PyroE-Q-S-G-DOH,

Pyro-E-E-S-G-DNH2, PyroE-E-S-G-DOH.

1

Melanocytes PyroE-F-GNH2 1
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T-Lymfocytes AcE-S-GNH2 1

Neuroblast cells AcD-Q-Y-GNH2

Hemoregulatory peptides Pyro-E-E-D-C-KOH

AcS-D-K-POH].

7

8

Thymus factors pyroE-A-E-S-N;

PyroE-A-G-G-S-E-D

PyroE-A-G-E-E-S-N

9

Seminal plasma PyroE-A-E-S-A

PyroE-V-A-D-S-D-Q-N

1
0

PyroE=pyroglutamic acid.

Table 1: Isolated low MW growth inhibitors of chalonic nature.

Methods
Deprimerones were isolated from different tissues as described [3]

and the peptide released from DNA by alkaline extraction in a
bicarbonate buffer at pH 9.5. Peptide levels are expressed as µg
peptides/10 mg DNA.

The following normal tissues were studied: rat Liver, mouse Liver,
mouse Thymus and Fibroblast L-929 cells. The malignant cells were
Novikoff hepatoma cells, mouse fibrosarcoma, mouse lymphosarcoma
and fibrosarcoma LP-59 cells.

Chalones were obtained by immersing tissues or cells in ice-cold
water [4], and homogenized in ice. Acetic acid was added to a final
concentration of 0.5M which also inhibits many peptidases. Proteins
were separate from low MW compounds by gel filtration on Sephadex
G-25 columns in 0.5 M acetic acid.

Aliquots of 0.4 ml each 4 ml fraction were hydrolyzed in 2 M KOH
for 2 hours in a boiling water bath, neutralized with 2 MHCl and
ninhydrin color developed as described by Rosen [32] [also
tryptophan survives this hydrolysis]. With this method each amino
acid has the same molecular absorption coefficient. The following cells
and tissues were studied: Normal tissues: Epidermis [Mouse],
Epidermis [human], Epidermis [Pig], Colon [Mice], Colon [Human],
Liver [Rat], Liver [Mouse], Cortex [Pig], Kidney [Dog], Spleen [Pig]
and granulocytes [Human]. Malignant tissues were from epidermal
sarcoma [Human], colon carcinoma [Mouse], colon carcinoma
[Human], hepatoma [MH1C1, Rat], neuroblastoma [Human],
melanoma [Human], Myelogenic leukemia [Human ] [3,4].

The ratio of low MW ninhydrin colorable compounds to the post
hydrolysis amino acid content of the protein peak from G-25 was
calculated for each experiment.

Results
A clear cut decrease in DNA binding peptides as well as all post

hydrolyses ninhydrin colorable low MW compounds were found in
cancer cells and tissues (Tables 2 and 3). The increase growth rate
could be stopped by reintroducing the total peptide level to the normal
one .

Similarly the level of amino acids and peptides [low MW fraction
after G-25 filtration] was significantly reduced in malignant cells and
tissues as seen in Table 3 [4,5].

The inhibitory peptides could be isolated from incubation fluid or
ascites, but very low yields or not at all from the malignant cells and
tissues [4,5].

Cell type Peptide level ± SEM N compared P

Novikoff hepatoma 95 18 3

Rat liver 179 24 3

Mouse liver 185 10 3

All normal liver cells 177.5 9.8 6 1 and 4 0.0078

All normal cells 187.4 7.9 1
2

All malignant cells 116.8 7.0 1
2

5 and 6 0.0001

Table 2: Level of active peptides released at pH 9.5 from DNA.

Peptide level in µG peptide/10 mg DNA. The remaining peptide
fraction when added to a concentration of 10 µg peptide fraction/5µg
DNA inhibits RNA polymerase by approximately 92%.

Cell type ratio SD N compared p

Malignant tissues 4.18 0-9 20

Normal tissues 0.83 0-39 19 1 and 2: 0.00
01

Malignant cells 4.48 1.43 9

Normal cells 0.17 0.48 5 3 and 4: 0.00
1

All malignant cells/tissues 4.49 0.84 40

All normal cells/tissues 0.980 1.39 41 5and 6: 0.00
01

Table 3: Change in Protein/Low MW ratios in normal and malignant
cells and tissues.

The table shows the ratio of the protein peak from G 25 divided by
the low MW compounds, both measured as post hydrolysis released
ninhydrin colored material. The low MW compounds are lost from
the transformed and malignant cells investigated by gel-filtration.

Discussion
Both the deprimerones isolated by the Italian group and the

chalones are decreased in malignant cells and tissues compared to
normal controls. When the brakes to growth and/or mitosis are
removed faster cell growth is to be expected. Cells that have a high
mitotic rate more easily turn malignant [33].

If decreased levels of inhibitor are critical then peptidases and
proteases that break down these peptides [34] ought to be involved in
carcinogenesis. Increased break down of peptides seem to increase
tumor growth. Thus increase in membrane associated cathepsin L
increases metastasis of melanomas [35]; Increase in cysteine
endopeptidase [36], and Cathepsin D in breast cancer [37] indicate
such a possibility. Increasing peptide levels by inhibiting break down
[38] seem to retard tumor growth. Peptidases and proteases may have
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prognostic value [39,40]. Furthermore the more malignant some
tumors are the stronger is the out transport from the cell [41,42]

Based on our findings we propose that decrease in peptides and
externalization of the same, may be a final common path in
carcinogenesis. Is it possible that membrane changes resulting in
decreased level of inhibitory peptides and amino acids is the primary
lesion in carcinogenesis?? This would fit both the transport or
diffusion out of cells and the peptidase data, where increase in
peptidase activity promotes malignancy while decrease inhibits tumor
growth.

Conclusion
Low MW peptides that are mitosis inhibitors and differentiation

factors are decreased in transformed and malignant tissues and cells.
The chalones can be recovered from the growth medium or from
ascites fluid. Differentiation decreases with increased growth and
mitosis rates. Increased growth rate ought to increase possible
mutation rates and possibly carcinogenesis?
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