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Introduction
In mathematical optimization, Danzig’s simplex method (or 

simplex algorithm) is popular for linear programming (LP) [1]. LP is 
a technique for solving a large number of maximization/minimization 
problems that have the property that the constraints and the objective 
function are all linear functions of the input variables [2]. It’s widely 
utilized optimization method for solving real-life problems because of 
its efficacy. LU-decomposition (where ’LU’ stands for ’lower upper’, 
and also called LU factorization) factors a matrix as the product 
of a lower triangular matrix (L) and an upper triangular matrix (U) 
was introduced by mathematician Alan Turing in 1948 [3,4]. LU-
decomposition is basically a modified form of Gaussian elimination. 
LU decomposition is an effective procedure for solving LP problems, 
this method can help in accelerating the computation. Over and above, 
the development of computers and software packages has made LU 
decomposition easy and attractive method to solve large-scale LP 
problems very quickly. The simplex algorithm can do the job well, but 
in some scenarios it suffers from what is called iteration cycling [5,6]. 
Cycling is defined as “The phenomenon in which the same sequence 
of basic feasible solutions is generated repeatedly (indefinitely) by the 
simplex method [7-9]. In this paper, we use the LU- decomposition 
method to solve this issue. In this method, the objective function is 
considered as a constraint which together with linear inequalities forms 
a system of linear inequalities. Through applying LU-decomposition 
method, we get the exact solution without iterations. For the current 
LP problem, three cases were discussed and explained through solving 
numerical examples by LU-decomposition later on in this paper.

Background
LU-decomposition

The LU-decomposition method first “decomposes” matrix A into 
A=L.U. More accurately, if A is an n×n matrix, L and U are also n×n 
matrices with forms like the following:
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For the system of equations Ax=b. The motivation for LU-

decomposition is based on the observation that systems of equations 
involving triangular coefficient matrices are easier to deal with [7]. 
Definition of LU – factorization: If the n×n matrix can be written as the 
product of a lower triangular matrix L and an upper triangular matrix 
U, then A=LU is an LU-factorization of A. 

Linear programing problem

Linear Equations (LEs): By definition, all equations and inequalities 
in a LP must be linear: A linear equation in n variables x1,x2,x3,··· ,xn has 
the form:

a1x1+a2x2+a3x3+...+anxn=b                                                                        (1)

Where: The coefficients (a’s) are real numbers. The (x’s) are called 
the variables of the equation. Linear equations and inequalities are 
often written using summation notation, which makes it possible to 
write an equation in a much more compact form. The linear equation 
above, for example, can be written as follows:
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=
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where i=1,2,3...n is a counter. The Decision Variables (DVs): The 
variables in a LP are a set of quantities that need to be determined in 
order to solve the problem. The variables are sometimes called DVs 
because the problem is to decide what value each variable should take. 
Typically, the variables represent the amount of a resource to use or 
the level of some activity. Frequently, defining the variables of the 
problem is one of the hardest and/or most crucial steps in formulating 
a problem as a linear program. The variables will be represented-very 
abstractly - as:

X1,X2,...,Xn
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The Objective Function: The objective of a LP problem will be to 
maximize or to minimize some numerical value. The objective function 
indicates how each variable contributes to the value to be optimized in 
solving the problem. The objective function takes the following general 
form:

Maximize or Minimize: 1 1 2 2
1

...
n

i i n n
i

Z c x c x c x c x
=

= = + + +∑ (3)

Where: ci is the objective function coefficient corresponding to the ith 

variable, and xi is the ith decision variable. The Constraints: Constraints 
are the possible values that the variables of a LP problem may take. 
They typically represent resource constraints, or the minimum or 
maximum level of some activity or condition. They take the following 
general form: Subject to:
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where:

j=1,2,3,··· ,m and i=1,2,3...n xi is the ith decision variable, aj,i is the 
coefficient on Xi in constraint j , and finally bj is the right-hand-side 
coefficient on constraint j.

The Non-negativity Constraints: The variables of LP must always 
take non-negative values (they must be greater than or equal to zero).
The non-negativity constraints are part of all LP formulations, and 
always included in an LP formulation. They are written as follows:

Xi ≥ 0,i=1,2,3,...,n.

LP problem-standard form

An LP problem is in standard form if it seeks to maximize the 
objective function subject to the constraints:

Z=a1x1+a2x2+...+anxn                                                                              (5)

Subject to the constraints:
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Where xi ≥ 0, and bi ≥ 0.

Methods
Consider the following LP problem: The objective is to Maximize
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Subject to:
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To find Z, we will rewrite the above LP problem in the form of less 
than or equal (≤) inequalities as follows:
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Consider the system of n linear equations in variables: AX=B, such 
that:
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In this way, the objective function is 

considered as a constraint and z is considered as a variable.
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When we obtained an LU – decomposition of a matrix A, we 
can solve the system of n linear equations in n variables AX=B very 
effectively in the following two steps:

i.	 Forward substitution: Write Y=UX and solve LY=B for Y, it 
starts at the top of the matrix, because L is lower triangular matrix.

ii.	 Back substitution: Solving UX =Y for X, the matrix U is 
upper triangular The column matrix X is the solution of the originated 
system because: AX=LUX=LY=B .

Numerical Examples Explanation
For the current LP problem in this paper, three cases were 

considered.

Case One: The number of inequalities is equal to the number of 
variables.

Case Two: The number of inequalities is less than the number of 
variables.

Case Three: The number of variables is less than the number of 
inequalities.

If there is a zero row in U, then the presented LP problem has an 
infeasible solution, thus, the process can be stopped.

Case One: In this case LU factorization is applied to the system of 
linear equations: AX=B. Firstly, we get the matrix as an initial iteration 
and then the matrix as final iteration. Maximize: Z=x1+2x2 −x3 Subject 
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Finally, we will find the matrix 
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On simplification we get
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Case Two: Add the inequalities in the system till number of 
inequalities equals the number of variables. We can add the inequalities 
in the system as below: Consider the first constraint in given linear 
programming problem.

a21x1+a22x2+...+a2,n−1x2,n−1 ≤ b2

Choose the non-zero coefficient in this inequality a2j 6= 0 and 
add the inequality: a21xj ≤ b2 in the system, continuing in this way till 
number of inequalities reaches to the number of variables.

The problem is: Maximize: Z=2x1+3x2

Subject to

x1+x2 ≤ 1

 x1, x2 ≥ 0

The system of linear inequalities is:

−2x1 −3x2	 +Z	 ≤ 0

   x1   +x2		  ≤ 1

          +x2		  ≤ 1
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	On simplification we get:
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Finally, we will find the matrix 
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to the constraints:

2x1+x2+x3 ≤ 14

4x1+2x2+3x3 ≤ 28

2x1+5x2+5x3 ≤ 30 x1,x2,x3 ≥ 0

To solve this case by LU Factorization Method, we will write the LP 
Problem as follows:

−x1 −2x2+x3+Z ≤ 0

2x1+x2+x3 ≤ 14

4x1+2x2+3x3 ≤ 28

2x1+5x2+5x3 ≤ 30

−x1,−x2,−x3 ≤ 0.
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The two matrices are equal, on simplification we get:
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by solving the equation: 
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Case three: If there is less numbers of variables than that of 

inequalities, then we introduce that much number of slack variables in 
the appropriate inequalities.

Problem

Maximize: Z=f(x1,x2)= 3x1+2x2

Subject to:

2x1+x2 ≤ 18

2x1+3x2 ≤ 42

3x1+x2 ≤ 24

x1,x2 ≥ 0

System of linear inequalities

−3x1 −2x2+Z ≤ 0

2x1+x2+x3 ≤ 18

2x1+3x2 ≤ 42

3x1+x2 ≤ 24

−x1,−x2,−x3 ≤ 0.

Following the proposed methodology, we get the following 
solution: x1=3,x2=12, and Z=33, solution using MATLAB will be 
provided in the later on.

Computerized Solution of Lu Factorization
To test the efficiency of the proposed approach i.e. LU Factorization, 

MATLAB 2014 was used. MATLAB has a set of useful functions for 
linear programming such as ‘Linprog’ function. However we will be 
following a similar approach to the proposed methodology. A small 
difference exists in the final steps as presented below. To demonstrate 
the approach Case 1 will be used. The matrix of coefficients 0A0 and 
the right hand side of the system 0b0 are inputted. Then the function 
0lu0 will be utilized. This function creates the lower and upper matrices. 
Final two steps include using the back slash of MATLAB which applied 
matrix left division to find the value of matricesY and X, respectively. 
The final solution i.e. Z value can be found from the X matrix.

Case I 

Solution by MATLAB

A=[ -1 -2 1 1

2 1 1 0

 4 2 3 0 	%Matrix A is defined, the last column represents has the 
objective

 2 5 5 0];	 %function

b=[0 ; 14 ; 28 ; 30]; % The vector of Right hand side values

[L,U]=lu(A)	 %LU decomposition applied with Matlab

Y=L\b	 %Forward substitution to find the value of Y.

X=U\Y	  %Back substitution to find the values of X.

Solution:

L =[-0.2500	 -0.3750	  1.0000	  0

 0.5000 	  0	  -0.1633	  1.0000

 1.0000 0	  	 0	  0

 0.5000	  1.0000	 0	  0]

U =[4.0000	 2.0000	 3.0000	 0

 0	 4.0000	 3.5000	 0

 0	  0	 3.0625	 1.0000

 0	 0	 0	 0.1633]

Y=[28.0000 ; 16.0000; 13.0000 ; 2.1224]

X=[5 ; 4 ; 0 ; 13 ]  % In this case x1=5m x2 =4 and Z=13

Case II

A=[ -2 -3 1 ; 1 1 0 ; 0 1 0] 

b=[0 ; 1 ; 1]

Solution

L =[1.0 0 0; -0.50 -0.50 1.00; 0 1.00 0]

U =[-2.0 -3.0 1.0; 0 1.0 0; 0 0 0.5000]

Y =[0 1.0000	 1.5000]

X= [0 1 3]

Case III

A=[ -3 -2 1 0 0

 2 1 0 1 0

 2 3 0 0 1

 3 1 0 0 0

 0 0 0 -1 0]

b=[ 0; 18 ; 42 ; 24 ;0]

Solution

L=

1.0000	  0	  0	  0	  0

-0.6667	 -0.2000	 0.5714	  1.0000	  0

-0.6667	 1.0000	  0	  0	  0

-1.0000	 -0.6000	 1.0000	  0	  0

 0		   0 0 -1.0000 -1.0000

U=

-3.0000	 -2.0000	 1.0000	  0	  0

 0	 1.6667	 0.6667	  0	 1.0000

 0	  0	 1.4000	  0	 0.6000
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 0	  0	  0	 1.0000	 -0.1429

 0	  0	  0	  0	 -0.1429

Y=[0 42	49.2 -1.7143 -1.7143 ]	

X=[6.0 6.0 30.00	 0 12.00 ]	

It should be noticed in MATLAB the A matrix can be a rectangular 
matrix i.e. with a dimension of m rows and n columns. Numerically, it 
is shown that non-square matrices don’t limit the applicability of this 
method.

A Case with Cycling
As mentioned earlier in the introduction, Cycling is one of the 

main limitations in Simplex. The authors are aware that his problem is 
addressed by many researchers. In this section one example from the 
work of Zornig will be solved using the proposed LU-decomposition 
methodology. This particular problem cycles every 4 iterations to its 
initial form.

Maximize: 2
1 3 4

593 50 0.4 .
20

Z x x x x s t= + − −

4

1 2 3 4

1 2 3 4

1 2 3,

1 1 3 2 0
40 400
1 9 20.5 0
20 200 25

, 0x

x x x x

x x x x

x x x

+ + + ≤

+ − + ≤

≥

Applying the proposed approach by MATLAB the following is 
obtained:

l=1.0000	  0	  0		

 -0.0083	 1.0000	  0		

 -0.0167	 0.1887	 1.0000		

u=-3.0000	 -2.9500	 50.0000	  0.4000	 1.0000

0	  -0.0221	 3.4167	 2.0033	 0.0083

0	  0	 -0.3113	 -0.2913	 0.0151

y =[	 0	 0	 0]		

x =[	 0	 0	 0	 0	 0]

This result is obtained without iterations, and the optimal solution 
is reached directly.

Conclusion
Comparing to the complex algorithm, LU factorization method 

has simple and lesser computations. LU factorization method becomes 
very mechanistic after practice and the algorithm used is very compact. 
Moreover, cycling is not an issue for LU Decomposition. LU method 
is as more efficient than the simplex algorithm. Support these results. 
Remarkably, LU is an effective method in practice, particularly when 
the scale of the problem is small. In LU factorization method, the slack 
variables only if the number of variables is less than the number of 
inequalities, this not shown to be a problem when using MATLAB.

One limitation of this approach is that there are scenarios the LU 
factorization did not work properly. In such cases, a new row is added 
with one of the following constraints: xi  ≥ 0 until the solution provides 
all decision variables are non-negative. 
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