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Introduction
Doxorubicin (Dox) is one of the most studied chemotherapeutic 

anticancer drugs used for the treatment of a wide range of solid tumors 
and hematological malignancies (i.e. leukemia and lymphoma) in 
clinical practice [1,2]. This anthracycline drug is isolated from the 
culture of Streptomyces peucetius and administered intravenously as 
the hydrochloride salt during therapy. However, the cardiotoxicity 
and poor selectivity of this drug limits its direct administration and 
cumulative dosage resulting in off-target side effects. Hence, without 
changing the drug itself, there is a great incentive to develop alternative, 
rapid and more effective chemotherapeutic approaches to direct the 
drug to its target [3]. Consequently, different Dox formulations and 
modifications that allow it to evade membrane transporters have 
been the subject of many new formulations, many of them are nano-
based [4-8]. Particularly, special attention have been devoted to the 
significant role of magnetic iron oxide nanoparticles (MNPs) in 
enhancing intracellular drug uptake/anticancer drug accumulation 
inducing apoptotic cell death, and offering means to inhibit the cellular 
drug resistance, thus providing promising imaging/targeting potentials 
in leukemia therapy [9-12].

MNPs have been extensively studied not only as imaging vehicles, 
but also as drug nanocarriers [13-16]. The main advantages of using 
MNPs for such purposes are: 1) easy preparation; 2) small sizes and 
large surface areas; 3) facile chemical functionalization; 3) excellent 
biocompatibility and stability; 4) efficient drug conjugation; and 5) 
superior magnetic responsiveness. Such unique properties of MNPs 
enabled their use as MRI contrast agents, hyperthermia agents, 
magnetic field guided localization vectors, and/or drug delivery 

vehicles [17]. Hence, MNPs are excellent candidates for targeted 
drug delivery and image-guided therapeutics with a great potential in 
clinical cancer theranostics [18,19]. Although there are many reports 
on the utilization of drug-loaded MNPs for cancer imaging and therapy 
[20-24], very few reports have focused on human leukemic cancer [9-
12,25-29]. Moreover, all of these studies are focused on only one type 
of leukemia cells K562 derived from chronic myelogenous leukemia 
(CML) patients.

Leukemia, a malignant progressive devastating cancer of the blood 
cells, is caused by the replacement of normal white blood cells with 
immature or abnormal leukemic cells, with limited treatment strategies 
possibly due to poorly effective drug delivery to affected areas [30]. 
Unlike solid tumors, leukemic patients can’t be cured by surgical 
treatment. The main strategy for treatment is using chemotherapy. 
Although many different clinical antitumor agents are currently used 
in the treatment of acute promyelocytic leukemia (APL), acute myeloid 
leukemia (AML), or CML patients, a high proportion of these leukemic 
patients eventually relapse [31-33]. Hence, alternative approaches 
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needed. In this work, we report the development of a magnetic nanocarrier made of PVP-stabilized magnetic iron 
oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising selective drug carrier 
to different types of human leukemia and normal cells. Our results revealed that while the unloaded MNPs were not 
potent to any of the cells, Dox@PMNPs showed significant toxicities, effectively killing the different leukemia cells, 
albeit at different inhibitory concentrations. Interestingly and superior to free Dox, Dox@PMNPs showed enhanced 
and significant inhibition towards the human monocytic THP-1 cells compared to human promyelocytic leukemia cells 
HL-60 (2-fold enhanced cytotoxicities), with the least potency towards the normal peripheral blood mononuclear cell 
(PBMC) cells (up to 6-fold). Nonetheless, free Dox was found to be concurrently less toxic to all the three cell lines 
tested. The cytotoxic effects obtained were further confirmed by live confocal imaging and electron microscopy. Both 
imaging techniques confirmed distinct morphological changes (membrane blebbing, shrinkage, and condensation) 
corresponding to typical apoptotic features in the treated leukemia cells compared to normal PBMC cells. The observed 
enhanced cytotoxic effects of Dox@PMNPs is mostly dependent upon the selective and differential endocytic uptake 
of Dox@PMNPs, with subsequent release of Dox intracellularly to the cytoplasm after 6 h, which then translocates to 
the nucleus after 24 h, causing apoptotic cell death. Importantly, magnetic Dox nanocarrier described here reduces the 
unwanted diffusive side effects of the free drug and allows selective drug delivery to leukemic cells, allowing its potential 
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DLS measurements were assessed on Malvern Zetasizer Nano 
ZS instrument. TGA were carried out on a PerkinElmer TGA 4000 
equipment and the samples were burned under nitrogen at a constant 
heating rate of 10°C/min from 35 to 700°C. Confocal microscopy 
images were visualized using inverted Zeiss LSM 780 multiphoton 
laser scanning confocal microscope equipped with 20x and 40x (oil 
immersion) objectives and axiocam cameras.

Preparation of Dox@PMNPs

FeCl3·6H2O (30 mg, 0.11 mmol) and PVP (15 mg) were mixed in 
water (1 mL), followed by addition of 1 mL aqueous FeCl2·4H2O (11 
mg, 0.055 mmol). To the above mixture, 250 μL Dox. HCl solution 
(2 mg/mL) were added, followed by addition of 2 mL NH4OH base. 
The reaction mixture was stirred for 3 h at room temperature under 
inert argon atmosphere. The NP dispersion was then isolated via 
centrifugation (4500 rpm, 20 min), washed repeatedly (6x) with water 
until no Dox was detected in the supernatant, and finally redispersed 
in water to form stable aqueous suspensions of Dox@PMNPs (1 
mg/mL NP; 67 μg/mL Dox). Alternatively, the suspension can be 
dialyzed against water until no Dox is detected in the supernatant. The 
percentage of Dox on NPs was determined by UV-vis spectroscopy. 
The absorbance of the residual Dox in the supernatant was measured 
(λmax=481 nm) and the percentage of Dox loading (w/w%) was then 
quantified. 

Loading Efficiency =
Wl

W0
x 100

The loading efficiency was calculated as: 
Where Wl is the amount of Dox loaded onto NPs and W0 is the 

weight of Dox in the initial solution. The amount of Dox adsorbed 
onto NPs was calculated from the difference between the initial Dox 
concentration and the Dox concentration in the supernatant.

Cell viability assays

All non-adherent cells were plated in flat-bottom 96-well plates at 
a density of 2-3 × 105 cells/well in 100 μL of their respective growth 
medium. Serial dilutions of the different NP formulations, ranging 
from 50 to 0.25 μg/mL, were made directly in the cell culture medium 
(RPMI+10% FBS+1% PS) performed in triplicates, and directly 
transferred to the cell plates containing the cells (200 μL total volume). 
The wells at all edges were left free of cells in order to prevent edge effect. 
An additional row with only the NPs was added in order to account for 
the NP effect. In addition, the free drug control wells at the equivalent 
drug concentrations were also prepared simultaneously. After 48 h of 
incubation at 37°C with 5% CO2, the medium was removed and the 
cells were washed with PBS. Cell viability was then determined using 
the MTT viability assay following the manufacturer’s protocol. Briefly, 
20 μL of MTT reagent (5 mg/mL) was added to each well and kept for 
4 h at 37°C in the incubator. The supernatant was then removed, and 
the MTT formazan was dissolved in dimethyl sulfoxide (DMSO). The 
absorbance was measured on iMark microplate absorbance reader at 
590 nm. The percentage of viable cells was calculated as the ratio of 
the absorbance of the treated group divided by the absorbance of the 
control group multiplied by 100. The absorbance from the untreated 
control cells was set as 100% viable. IC50 values were calculated from 
dose−response curves generated using a polynomial dose-response 
approximation.

Live confocal microscopy imaging

All non-adherent cells were suspended in the respective media 
in 8-well dish (Thermo-fisher Scientific) and were exposed to Dox@

employing delivery systems that tends to improve therapeutic targeting, 
enhance the drug efficacy, and reduce the systemic side effects of 
chemotherapeutic drugs are being actively sought.

We specifically focused on drug delivery to two human leukemic 
cell lines THP-1 and HL-60, as well as human peripheral blood 
mononuclear cells (PBMCs) as controls. These different cell lines are 
anticipated to have different characteristics, endocytic potentials, 
and response to chemotherapy. THP-1 is a human monocytic cell 
line derived from an acute monocytic leukemic patient. THP-1 is 
single, round cells with distinct monocytic markers resembling 
primary monocytes and macrophages in morphology, function and 
differentiation properties [34]. After exposure to phorbol-12-myristate-
13-acetate (PMA), nearly all the THP-1 cells start to adhere to culture 
plates accompanied by differentiation into a macrophage phenotype 
with marked morphological changes [35]. On the other hand, HL-60, 
a human promyelocytic leukemia cell line, was derived from a patient 
with AML, and is typically used as an attractive model for studying 
human myeloid cell proliferation and differentiation [36].

In this work, the utilization of Dox-loaded polymer-stabilized 
MNPs (Dox@PMNPs) as effective and selective drug delivery vehicles 
for the different leukemic cells was evaluated. Systematic toxicities 
and inhibitory concentrations against the different types of cells were 
evaluated. Moreover, live confocal and electron microscopy were 
conducted to investigate the intracellular NP trafficking and drug 
release properties inside the cells. Importantly, to our knowledge, 
this is the first report using nanoparticulate drug nanocarriers to 
systematically study the selective delivery of cytotoxic agents to human 
leukemic cancer cells. Importantly, the MNP formulation developed 
here can potentially open new opportunities for in vivo leukemia 
therapeutic imaging and hyperthermia.

Experimental Section
Materials, methods and cell lines

Unless otherwise indicated, all chemicals and solvents were 
obtained from commercial suppliers and used as supplied without 
further purification. Iron (III) chloride hexahydrate (FeCl3·6H2O), 
iron (II) chloride tetrahydrate (FeCl2·4H2O), doxorubicin (Dox), and 
the polymer Poly-N-vinylpyrrolidone (PVP) (MW=58,000) were 
all purchased from UFC Biotechnology. All reactions for the NP 
syntheses were carried under an argon atmosphere. 0.2 µm filtered 
deionized water was used for the synthesis of the nanoparticles. All 
cell lines were purchased from the American Type Culture Collection 
(ATCC) and grown in RPMI 1640 medium supplemented with 10% 
FBS and 1% Penicillin/Streptomycin. Human leukemic cells used in 
this study are: THP-1 (human monocytic cell lines derived from an 
acute monocytic leukemia patient); HL-60 (human promyelocytic 
leukemia cells derived from the peripheral blood of a 36-year-old 
woman with AML FAB M2); and in-lab prepared human PBMCs as 
controls. For PBMCs, peripheral blood samples were collected from 
Dr. El-Boubbou’s own blood at KAIMRC under approval from the 
institution. PBMCs were then isolated using ficoll-paque gradient 
as described previously. Briefly, 10 ml of drawn blood were diluted 
3-fold in dilution buffer (PBS saline, 2 mM EDTA), layered carefully 
over ficoll-paque and centrifuged at 4500 rpm for 20 min. The layer 
corresponding to PBMCs was isolated, transferred to 45 ml of dilution 
buffer, centrifuged twice at 3000 rpm for 20 min and the resulting pellet 
re-suspended in 10 ml growth media. TEM images were collected on a 
JEOL-JEM 1230 operating at 100 kV using Gatan camera with Digital 
Micrograph Imaging software. SEM images were processed using a FEI 
NanoSEM 450 scanning electron microscope at 15 kV.
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PMNPs (10 μg/mL NPs) or equivalent amount of free Dox, and further 
incubated for different periods of times. Hoechst 33342 stain was 
then added. The cells were allowed to settle down for 20 min before 
microscopic visualization. To mimic physiological conditions, no 
fixation of cells was conducted.

Scanning electron microscopy (SEM)

Representative leukemic cells in respected buffer (2 mL) were first 
treated with the NPs (100 μg/mL) for 24 h as described above. The 
specimens were then processed for SEM by the following method: 
Cells were first fixed with 4% paraformaldehyde at 4°C and then 
dehydrated with graded concentrations of ethanol. The cells were then 
transferred to appropriate carbon taped stubs (Ted Pella, USA) for 
imaging. To enhance the electron conductivity, samples were coated 
with gold/palladium (Au/Pd) by sputter coating and examined on a 
FEI NanoSEM 450 scanning electron microscope at 15 kV.

Transmission electron microscopy (TEM)

Representative leukemic cells in respected buffer (2 mL) were first 
treated with the NPs (100 μg/mL) for 24 h as described above. The 
specimens were then processed for TEM by the following method: the 
specimen was fixed in 3% glutaraldehyde in 0.1 M PBS (pH 7.4) for 
more than 3 h. After washing in the same buffer, this was post-fixed 
in 1% OsO4 in 0.1 M PBS (pH 7.4) for 1 h, followed by PBS washing. 
The specimen was then dehydrated in a series of acetone solutions and 
infiltrated in ace-tone: resin (1:1) for 1 h, and then with acetone: resin 
(1:2) for more than 3 h. The specimen was then embedded in epoxy 
resin (Araldite) and placed in an oven at 80°C overnight to polymerize. 
Ultrathin sections were obtained with Ultra microtome (Leica EM 
UC6), mounted on copper grids, and stained for contrast with heavy 
metal stains (uranyl acetate and lead citrate). TEM images were then 
collected on a JEOL-JEM 1230 operating at 100 kV using Gatan camera 
with Digital Micrograph Imaging software.

Result and Discussion
Dox@PMNPs used in this work were magnetic iron oxide 

nanocomposites with ~5-10 nm core diameters prepared according 
to our previously published work [37,38] via the Ko-precipitation 
Hydrolytic Basic (KHB) methodology (Figure 1). These stable colloidal 
nanocomposites were selected as carriers for Dox with the intention 
to develop a theranostic agent for subsequent in vivo experiments. We 
found that the non-covalent interaction and complexation between 
Dox and the poly-N-vinyl-pyrrolidone (PVP) polymer/NP surface 
is relatively weak and is pH-dependent, showing several lines of 
evidence for Dox release from the nanocarriers inside cells. Moreover, 
the non-covalent conjugation has the advantage of preserving both 
the structure of the NPs and the attached Dox, enabling intracellular 
tracking of the drug microscopically. MNPs where drug molecules 
are covalently conjugated to the NPs’ surface usually exhibit low drug 
entrapment efficiencies and more difficulty in drug release at the target 
site due to the covalent binding [19]. Furthermore, the orientation 
of the active functional moieties present in drugs might alter when 
covalently conjugated [39]. Our studies demonstrated that this simple 
non-covalent approach formed colloidal water-dispersible drug-loaded 
PMNP formulations with good loading efficiencies. Up to 60% of the 
drug was loaded onto PMNPs (i.e., 67 μg of Dox/mg PMNPs), as evident 
from absorption spectroscopy. Moreover, the obtained nanocolloids 
were stable for months, without any detectable precipitation or loss of 
physiochemical properties. The Dox@PMNP nanocarriers prepared 
were thoroughly characterized by a variety of techniques including 
transmission electron microscope (TEM), dynamic light scattering 
(DLS), and thermal gravimetric analyses (TGA) (Figure 2). Respective 
TEM image of a typical Dox@PMNP dried sample clearly shows 5-10 
nm core size diameters. DLS measurements of an aqueous dispersion 
of Dox@PMNPs in water revealed a hydrodynamic diameter (DH)=120 
nm with a relatively uniform and narrow size distribution of the as-
synthesized particles. No significant changes in the size were observed 
with time, further confirming the remarkable stability and colloidality 
of the particles in their aqueous dispersions. Furthermore, TGA showed 
a 39% weight loss of Dox@PMNPs, further confirming the successful 
adsorption of Dox onto the PMNPs.

With the MNPs in hand, we first sought to test and quantify the 
toxicities of the as-synthesized NPs towards three different cell lines, 
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Figure 1: Schematic illustration for the preparation of Dox@PMNPs using KHB methodology.
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two leukemic and a control normal PBMC cells. In these experiments, 
the thiazolyl blue tetrazolium bromide (MTT) cell viability assay 
was used [40]. One of the major advantages of nanoparticulate drug 
delivery systems is to provide more selective and less harmful solutions 
to overcome problems of poor specificity and dose-limiting toxicities 
of active anti-cancer drugs. While the unloaded PMNPs were not 
toxic to any of the cells, even at the highest NP concentrations tested 
(50 μg/mL), Dox@PMNPs were found to be toxic to both leukemic 
cell lines THP-1 (IC50=26.3 ± 1.7 μg/mL NPs corresponding to 3.23 
μM Dox) and HL-60 (IC50=39.6 ± 2.1 μg/mL NPs corresponding 
to 4.87 μM Dox), with the least potency towards the normal PBMC 
cells ((IC50=155.8 ± 2.5 μg/mL NPs corresponding to 19.2 μM Dox) 
(Figure 3). Interestingly, Dox@PMNPs showed 6-fold and 4-fold 
enhanced cytotoxicities against the leukemic cells THP-1 and HL-
60 in comparison to the normal PBMC cells, respectively (Figure 4). 
Importantly, when the cells were treated with free drug at equivalent 
concentrations, Dox was found to be concurrently toxic to all the three 
cell lines at comparable inhibitory concentrations (THP-1 IC50=7.6 ± 
0.75, HL-60 IC50=7.1 ± 0.76, and PBMC IC50=7.4 ± 0.55 μMs Dox). The 
observed enhanced cytotoxicities of Dox@PMNPs compared to free 
Dox against leukemic cells, with the least sensitivity towards the normal 
PBMC cells suggest huge potentials for the Dox nanocarriers as efficient 
and selective drug delivery vehicles. We anticipate that the observed 
enhanced cytotoxic effects of Dox@PMNPs is mostly dependent upon 
the selective and differential uptake of Dox@PMNPs, and subsequent 
release of Dox intracellularly due to the biochemical changes inside 
the cells (mainly pH, hydrolysis, and endosomal/lysosomal hydrolytic 
enzymes) [41,42]. The payload then translocates to the nucleus in a 
sustained way exerting its cytotoxic action [38]. Importantly, using the 
Dox nanocarrier described here is by itself advantageous, as it reduces 
the unwanted diffusive side effects of the free drug and allows selective 
targeted drug delivery.

To explore the route of Dox@PMNPs delivery to leukemic cancer 
cells and perceive the intracellular NP distribution, confocal laser 
scanning microscopy studies were performed. To mimic physiological 
conditions, live confocal imaging with no fixation of cells was 
conducted. We treated two different types of leukemic cells (i.e. THP-1 
and HL-60) as well as normal PBMC with Dox alone, PMNPs alone, 
or Dox@PMNPs, and imaged the cells at different time intervals. The 
distribution of Dox showed a pattern that varied for cells exposed to 
free Dox vs Dox@PMNPs. Live confocal images confirmed that Dox 
is indeed delivered to the cell cytoplasm in relatively short periods 

of time (~6 h), but not to the nucleus, due to the intracellular uptake 
of Dox@PMNPs (Figure 5). Head-to-head comparison between the 
three cell lines after 24 h of Dox@PMNP incubation showed that 
Dox was translocated to the nucleus in leukemic cells, with more 
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intense red fluorescence for THP-1 as compared to HL-60, and 
typical apoptotic features clearly seen (Figure 6). On the other hand, 
normal PBMCs showed the least florescence intensities, where Dox 
was found to be mainly in the cytoplasm, with no prominent nuclear 
staining. These observations excitingly confirmed the cytotoxicity 
inhibitory concentrations obtained earlier. Moreover, to confirm 

this phenomenon further, representative SEM and TEM images 
of leukemic THP-1 cell line undergoing apoptosis after treatment 
with Dox@PMNPs for 24 h were recorded (Figures 7 and 8). While 
SEM clearly shows the change in morphological features as the NPs 
penetrate the cells delivering Dox, TEM validates the apoptotic 
features, where the cells curl up, condense and form irregular lumps 
with membrane blebbings. The NPs were found to be mainly located 
on the cell membrane and inside the cytoplasm but not in the nucleus. 
Interestingly, incubating the same cell lines with free Dox at equivalent 
concentrations, the red fluorescence was found to be directly localized 
in the nucleus of all cells with minimal detectable presence in the 
cytoplasm even after only 6 h of incubation. This phenomena is similar 
to earlier observations by us and others [13,38,43]. It is, thus, repeatedly 
evident that while free Dox is internalized by passive diffusion 
through the cell membrane, the uptake of Dox@PMNPs is rather 
directed by one type of endocytic trafficking mechanisms, specifically 
micropinocytosis [44,45]. Taking into consideration the distinctive 
mechanistic cellular uptake between the free drug and drug-loaded 
NPs (fast diffusion vs vesicular trafficking), our results strongly suggest 
that Dox@PMNPs can be a promising potential platform for selective 
drug delivery to human leukemic patients. Moreover, this kind of facile 
cell labeling of variety of leukemia cells by MNPs suggests that this 
material may be a good candidate for cellular MRI imaging and tagging 
of dysfunctional cells. Importantly, this targeted payload is promising 
to enhance the effectiveness of the drug in leukemic patients and may 
further allow physicians to image the cells exposed to MNPs. This can 
potentially open new opportunities for in vivo therapeutic imaging and 
hyperthermia.

Conclusion
We developed a promising drug-loaded nanocarrier for enhanced 

and selective Dox delivery to leukemic cells. We have shown that Dox@
PMNPs are selectively cytotoxic to human leukemic cells, inducing 
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Figure 4: MTT plot for the three different human leukemic cell lines treated 
with either Dox@PMNPs or free Dox at equivalent concentrations. The results 
noticeably show up to 6-fold increase in potency for the leukemic THP-1 cells 
compared to the normal PBMC cells. Moreover, in comparison to free Dox, 
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compared to free Dox. The obtained results indicate the promising potential 
for the utilization of Dox@PMNPS for effective and selective drug delivery to 
human leukemic cancers. The experiments were carried out in triplicate, and 
error bars denote standard deviations.

Figure 5: Live confocal microscopy images of representative leukemic THP-1 
cells (same phenomena observed for HL-60) and normal PBMC cells treated 
with Dox@PMNPs or equivalent concentration of free Dox for 6 h. Left to right: 
(a) Blue Hoechst channel showing positions of the nuclei, (b) Red Dox channel, 
(c) overlay of channels (a) and (b), and (d) overall overlay with transmitted 
light (TL). Both THP-1 and PBMC cells treated with free Dox showed red Dox 
fluorescence diffused directly to the nucleus, whereas Dox@PMNPs-treated 
cells showed Dox signal mostly in the cytoplasm, translocating to the nucleus 
with time (Figure 6). 

Figure 6: Live confocal microscopy images of THP-1, HL-60, and PBMC cells 
after the same incubation time (24 h) with Dox@PMNPs. Left to right: (a) 
Blue Hoechst channel showing positions of the nuclei, (b) Red Dox channel, 
(c) overlay of channels (a) and (b), and (d) overall overlay with TL. Images 
show that Dox@PMNPs are internalized more inside THP-1 compared to 
HL-60, causing apoptosis to both cells (typical apoptotic features such as 
condensation, shrinking, and irregular lump formation with membrane blebbing 
are clearly seen in the overlaid picture). Nonetheless for normal PBMCs, and 
even after 24 h of incubation, the red fluorescence was only apparent in the 
cytoplasm, but not in the nucleus, suggesting huge potentials for Dox@PMNPs 
as selective anticancer vehicles for leukemic cells.
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apoptotic cell death to THP-1 and HL-60 cells, with the least sensitivity 
towards normal PBMCs. On the other hand, when treated alone, free 
Dox is found to be concurrently less toxic to all the cell lines tested, 
suggesting huge potentials for Dox@PMNPs to be utilized as selective 
anticancer agents for leukemic cancer therapy. From the microscopy 
results, it is clear that Dox@PMNPs are endocytosed inside the 
cell cytoplasm, releasing the toxic drug payload intracellularly and 
causing apoptotic cell death. The prepared nanomedical formulation 
established here can potentially open new opportunities for in vivo 
therapeutic imaging, cancer monitoring, and hyperthermia.
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