alexa Magnetic Properties of Fe55Pd45 Films Deposited on Si (100) Nano-meter Wide Pillars | OMICS International
ISSN: 2157-7439
Journal of Nanomedicine & Nanotechnology
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Magnetic Properties of Fe55Pd45 Films Deposited on Si (100) Nano-meter Wide Pillars

Chi-Ching Liu1*, Shien-Uang Jen1, Jiann Shieh2, Jenh-Yih Juang3, Yuan-Ming Chang3, Han-Hsiang Chian1 and Huang-Wei Chang4

1 Instiute of Physics, Academia Sinica, Taipei, Taiwan

2 Department of Materials Science and Engineering, National United University, Miaoli, Taiwan

3 Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan

4 Department of Applied physics, Tunghai University, Taichung, Taiwan

*Corresponding Author:
Chi-Ching Liu
Institute of Physics, Academia Sinica
Taipei, Taiwan
Tel: 886227880058 extn- 8452
E-mail: [email protected]

Received Date: January 21, 2014; Accepted Date: February 20, 2014; Published Date: February 22, 2014

Citation: Liu CC, Jen SU, Shieh J, Juang JY, Chang YM, et al. (2014) Magnetic Properties of Fe55Pd45 Films Deposited on Si (100) Nano-meter Wide Pillars J Nanomed Nanotechol S5:006. doi:10.4172/2157-7439.S5-006

Copyright: © 2014 Liu CC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Nanomedicine & Nanotechnology

Abstract

Magnetic nano-dot arrays with (tilted) perpendicular anisotropy are useful for the high-density magnetic recording. In this study, we deposited two kinds of ferromagnetic sample: Fe55Pd45/Si (100)-plane and Fe55Pd45/Si (100)-pillar. Each sample underwent a rapid thermal annealing (RTA) treatment; with a heating rate of 40oC/sec up to 500oC, being annealed there for 30 minutes, and then quenched to room temperature. After fabrication, X-ray diffraction (XRD) indicated that after RTA the FePd alloy transformed from the fcc to the fct phase with lattice constants: a = 0.380 nm and c = 0.378 nm. The Si(100) pillars are 500 nm in length, 65nm in diameter, and with a density of about 1012 cm-2. On top of each Si(100) pillar there sat a prolate ellipsoid shape Fe55Pd45 particle: length L ≅ 108 nm and short-axis diameter
d ≅ 67 to 83 nm. Magnetic domain (MD) pattern of the FePd nano-dot array was studied by magnetic force microscopy (MFM). The overall magnetic domain size (D) is from 285 to 452 nm. The squareness ratio (SQR) of the magnetic hysteresis loop reaches as: (SQR)z = 0.65 > (SQR)y = 0.45 >(SQR)x = 0.40 for the FePd/Si(100)-pillar film. From the inplane rotation angle (φ) and the out-of-plane tilting angle (θ) dependencies of the coercivity (HC), we find that the former exhibits the characteristics of the curling-mode-like switch, while the latter exhibits the Stoner-Wohlfarth-like switch.

Introduction

The magnetic recording technology was developed very early in 1898; sound was first recorded on magnetic materials. Today, we still record digital information on magnetic materials. Convenient, reliable, and inexpensive are the most advantages in magnetic recording. There are technical limits in classical magnetic recording in terms of longitudinal or perpendicular recording. The super para-magnetic phenomenon will set an upper limit on the storage density in the ferromagnetic recording layer [1,2]. Usually, magnetic nano-dot media with perpendicular anisotropy are used for the high-density magnetic recording.

The key properties for the magnetic recording media with highdensity and low noise are associated with the high squareness in the perpendicular hysteresis loops and reduced magnetic domain sizes properties [3].The L10 phase of FePd alloys exhibits the perpendicular magnetic anisotropy. Besides, the production cost of FePd is lower than that of FePt. Moreover, FePt has very large coercive force (Hc), about 2 T, which means large power to write in recording. FePd needs less power in magnetic recording [4]. In this article, we studied magnetic properties, including various types of the magnetic hysteresis loops and the magnetic domain (MD) structures of FePd nano-dots deposited on top of nano-meter wide Si (100) pillars.

The Si (100) nano-pillars substrates were prepared by J. Shieh in National Nano Device Laboratory. He used the inductively coupled plasma chemical vapor deposition (ICPCVD) system to grow Si (100) nano-pillars [5,6]. From the Scanning Electron Microscope (SEM) image, the Si-nanowires are about 500 nm in length, aligned vertically with an average diameter of about 65 nm, and a density of about 1012 cm-2. The average diameter of the nano wire tip is about 15 nm.

Experimental

Fe55Pd45 alloy films were deposited on the previously mentioned Si(100)-pillar and Si(100)-plane wafers, respectively, by the thermal evaporation method. The various fabrication conditions are summarized below: the base pressure (p) was 2 × 10−6 Torr; the deposition temperature (TS) was room temperature (RT), and the film thickness (tf) was fixed at 80 nm.

After film fabrication, we tried to induce an additional thermal stress in the Fe55Pd45 alloy film and/or nano-dot by using a post Rapid Thermal Annealing (RTA) treatment. The sample temperature was heated up to 500°C, with a heating rate of 40°C/sec, and kept at 500°C for Δt= 30 minutes, and then quenched to room temperature in 25 minutes. If Δt = 30 minutes with RTA, we found that the structure of the FePd/Si(100)-plane film contained two phases, fcc and fct, in the Philips PW3040/60 X-ray diffraction (XRD) scan. If Δt was less than 10 minutes or more than 60 minutes with RTA, we found only pure fcc phase in the XRD scan. From XRD data of the sample with two phases, fcc and fct, we calculated the lattice constants: a =0.380 nm and c = 0.378 nm. Next, we applied the Δt = 30 minutes RTA condition again on the Fe55Pd45/Si (100)-pillars sample. In Figure1, the ellipsoid shape Fe55Pd45 nano-dot sits on top each Si (100)-pillar, with a length L ≅ 108nm. The short-axis (or planar) diameter of the ellipsoid (d) is 67-83 nm. We checked the rms surface roughness; it was about 14 nm by Park System XE-100atomic force microscopy (AFM).The diameters of the nano-dots are from 83 nm to 119 nm; the corresponding image is shown in Figure 2. Figure 3 shows the plane-view pattern of the MDs of FePd/Si (100)-pillar by Magnetic force microscopy (MFM). The overall magnetic domain size (D) ranges from 285 nm to 452 nm, much bigger than d.

nanomedicine-nanotechnology-scanning-electron-microscope

Figure 1: The Scanning Electron Microscope image shows Si(100) pillars with about 500 nm high, and the ellipsoid shape Fe55Pd45 wraping around each Si(100)-pillar top with a length L ≅ 108nm. The short-axis (or planar) diameter of the ellipsoid (d) is 67-83 nm.

nanomedicine-nanotechnology-atomic-force-microscopy

Figure 2: Atomic force microscopy image shows the diameters of the top nano-dots are from 83 nm to 119 nm.

nanomedicine-nanotechnology-magnetic-force-microscopy

Figure 3: Magnetic force microscopy plane-view pattern shows the magnetic domains of FePd/Si(100)-pillar. The overall magnetic domain size (D) ranges from 285 nm to 452 nm.

The magnetic hysteresis loops were obtained from Lake Shore 7400 Series vibration sample magnetometer (VSM) measurements. The in-plane (x-, y-axis) and out-of-plane (z-axis) hysteresis loops of the Fe55Pd45/Si (100)-plane film (after RTA)is shown in Figure 4A, and the Fe55Pd45/Si(100)-pillar film (after RTA)is shown in Figure 4B.

nanomedicine-nanotechnology-plane-hysteresis-continuous

Figure 4a: Shows the in-plane (x-, y-axis) and out-of-plane (z-axis) hysteresis loops of the Fe55Pd45/Si(100)-plane film(after RTA). Subscript “c” means continuous film.

nanomedicine-nanotechnology-pillar-nano-dot

Figure 4b: Shows the Fe55Pd45/Si(100)-pillar film (after RTA). Subscript “n” means nano-dot film.

Results and Discussion

From Figure 4a, the relationship among the x-, y-, and z-axis squareness ratios (SQRs) is that (SQR)x = 0.89 > (SQR)y = 0.81 > (SQR)z = 0.76. Hence, we believe that the easy-axis (EA) of the FePd/ Si (100)-plane films tends to be in the film plane. Even though we have succeed in acquiring the fct phase by RTA, without a proper seed layer, it is still difficult to obtain large enough magneto-crystalline or magnetoelastic perpendicular anisotropy to overcome the demagnetizing effect. Figure 4B shows (SQR)z = 0.65 > (SQR)y = 0.45 > (SQR)x = 0.40 for the FePd/Si(100)-pillar film. As a result, we thinkMs Ms tends to be aligned along the z-axis direction or the long-axis (l = L/2) of the FePd ellipsoid. This phenomenon may be due to the shape anisotropy (e.g. l> d) of the ellipsoid [1,7]. Yet, (SOR)z is still not close to 1, which indicates that the EA of the Fe55Pd45 dot is somewhat tilted from the z (or perpendicular) direction. The ratio (Ku/EM= 0.12) between magnetic anisotropy energy (Ku≡Kux-Kuz) and magneto static (or demagnetizing) energy (EM ≡2πMs 2 ) for the Fe55Pd45/Si(100)-pillar sample implies that it should exhibit a very weak perpendicular magnetic anisotropy. Thus, simple calculations show that the overall (or average) EA is tilted relative to the long Si pillars axis by an angle θo≒ 83°, when the film is in the demagnetized state. Notice that because, as shown in Figures 1, 2 and 3, some pillars were shorter, and could not get enough FePd deposition, the specific Ku/EM ratio of the single fully developed FePd ellipsoid m0-ust be larger than 0.12. Thus, for this FePd ellipsoid (or nanodot) its θo could be much less than 83o. This conclusion is qualitatively in consistent with that from MFM observations. From a simple calculation, we could find that the exchange length, equation where A is the exchange stiffness for Fe55Pd45. Then, roughly speaking, the relation between the d of FePd ellipsoid and lex is d = (8.9 ~ 11)×lex, and that between the length (L) of FePd ellipsoid and lex is L = 14×lex. Moreover, according to Morrish [8], the critical short-axis size (2bc) is given by the transcendental equation,

equation (1)

Where Je is the exchange integral, al is the lattice spacing, Da is the demagnetization factor along the long-axis, Ms is the magnetization and the 2bc of an acicular (or a prolate ellipsoidal) magnetic particle (L/d =a/b ≅1.5) is at least 45 to 55 nm. Notice that Ms of Fe55Pd45 is only 60% of Ms of Fe used in [8]. In addition, the dipole (or exchange) interaction between neighboring nano-dots could decrease the magneto-static energy per unit volume of the substance. Thus, the estimated 2bc for our FePd ellipsoid can be even larger. Finally, since L >d≥ 2bc, we conclude that the magnetic state of the FePd ellipsoid is likely to be either in a single-domain or vortex-domain state.

In Figure 5, the Hc of the FePd/Si(100)-pillar film is plotted as a function of the inclination angle (θ) and the azimuthal angle (φ) of the external field (H), respectively. Based on Figure 9.6 of [9], we found two modes to explain Figure 5. First, Figure 9.6 of [9] exhibits the Stoner- Wohlfarth (S-W) mode curve, which shows a decrease of coercive field, as θ increases from 0 to 90o. In Figure 5 the Hc versus θ (in-plane) curve has the same trend as the S-W mode curve. Second, Figure 9.6 of [9] exhibits the curling mode curve, which shows Hc increases, as φ increase from 0 to 90o. In Figure 5 the Hc versus φ curve has the same trend as the curling mode curve.

nanomedicine-nanotechnology-coercive-inclination-angle

Figure 5: Shows the coercive force (Hc) of the FePd/Si(100)-pillar film is plotted as a function of the inclination angle (θ) and the azimuthal angle (Ф) of the external field (H), respectively.

Conclusion

In this study, we have made two kinds of ferromagnetic sample: Fe55Pd45/Si (100)-plane and Fe55Pd45/Si(100)-pillar. Both of them have been treated by the RTA method at 500°C. The Si (100) pillars are 500 nm in length and 65nm in diameter. On top of each Si (100) pillar there sat a prolate ellipsoid shape Fe55Pd45 particle: length L≅ 108nm and short-axis diameter d ≅ 67 to 83 nm. The overall magnetic domain size (D), as revealed from MFM, ranges from 285 to 452 nm.

A theoretical estimation shows that the magnetic state of the FePd ellipsoid should be in a single-domain or vortex-domain state. The switch-filed, which varies a function of inclination angle (θ), follows the coherent S-W mode, and which varies, as a function of azimuthal angle (φ), follows the curling mode. We made single-domain or vortexdomain state sample. By depositing Fe55Pd45 on Si (100) nano-meter wide pillars we decreased the domain sizes of each nano-dot FePd particle. That is a good and economic way for the magnetic recording media with high-density and low noise in the perpendicular magnetic recording

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

  • 4th International Conference and Expo on Ceramics and Composite Materials
    May 14-15, 2018 Rome, Italy
  • 4th Annual Conference on Biomaterials
    June 04-06, 2018 Prague, Czech Republic

Article Usage

  • Total views: 11631
  • [From(publication date):
    specialissue-2014 - Apr 24, 2018]
  • Breakdown by view type
  • HTML page views : 7862
  • PDF downloads : 3769
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version