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Introduction
The classical of the capillary instability of a gas cylinder submerged 

into a liquid are given for first time by Chandrasekhar[1] for 
axisymmetric perturbation. Hasan [2], Elazab et al. [3] and Drazin 
and Reid [4] gave the dispersion relation valid for all axisymmetric 
and non- axisymmetric modes. Cheng [5] discussed the instability 
of a gas jet in an incompressible liquid for all modes of perturbation. 
However, we have to mention here that the results given by Cheng 
[5]. Kindall [6] performed experiments with modern equipment 
to check the breaking up of that model. Moreover, he attracted the 
attention for the importance of the stability and discussions of that 
model for its application in many domains of science. Concerning the 
hydrodynamic stability of a hollow jet endowed with surface tension 
we may refer to Chauhan et al.[7], Abramowitz and Stegun [8], Chen 
and Lin [9], Cousin and Dumouchel [10], Lee and Wang [11,12], 
Mehring and Sirignano [13], Parthasarathy and Chiang [14], Shen 
and Li [15], Shi et al. [16], Shukudov and Sisoev [17], and Villermaux 
[18], Melachlan and Kelly [19,20]. Soon afterwards a lot of researchers 
treated with the magneto-dynamic stability of such model analytically 
[21-23] and numerically upon utilizing appropriate basic equation and 
boundary condition. Hamdy M Brakat and Khloud R Khater studied 
the Hydromagnetic self-gravitating stability of streaming fluid cylinder 
with longitudinal magnetic filed [24]. It all foregoing works the liquid 
may be at rest or unform streaming in the unperturbed state. Here we 
explain the hydromagnetic stability of oscillating fluid cylinder with 
longitudinal magnetic field. 

Formulation of the problem

We consider a fluid cylinder (with negligible motion) of radius R0 
surrounded by an oscillating liquid cylinder with velocity, 

0 = (0,0, ),U Usin tΩ                (1)

Where U and Ω are the amplitude and oscillation frequency of the 
velocity.

The interior cylinder is being a gas with constant pressure 0
gP  and 

pervaded by the longitudinal magnetic field,

0 0= (0,0, ),gH Hα 				                (2)

and the liquid is penetrated by magnetic field 

0 0= (0,0, ),H H 					   (3)

where H0 is the intensity of the magnetic field and α is the 
parameter of 0

gH . The components of equations (1 - 3) are considered 
along the cylindrical polar coordinates (r, Φ, z) with the z-axis is 
coinciding with the axis of the hollow jet. The model is acted by the 
inertia, pressure gradient, capillary and electromagnetic forces. The 
hydro-magnetic fundamental equations appropriate for studying the 
stability of the fluid model under consideration are the combination 
of the pure hydrodynamic equations and those of Maxwell concerning 
the electromagnetic theory.

These equations may be given as follows in the liquid region.

( ( . )) = ( ),u u P J H
t

ρ µ∂
+ ∇ −∇ + ×

∂
			                 (4)

= ,J H∇× 					    (5)

= 0,u∇× 					                (6)

= 0.H∇× 					   (7)
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Abstract
The magnetohydrodynamic (MHD) stability of oscillating fluid with longitudinal magnetic field has been discussed. The 

problem is formulated and the (MHD) basic equations are solved. By using the computer procedure from different values 
of the acting magnetic field the stable and unstable regions are identified. This phenomenon is interest, academically 
and during the geological drilling in the crust of the earth as we have superposed gas-oil layer mixture fluids. A general 
eigenvalue relation is derived studied analytically and results are confirmed numerically. The oscillating liquid has stabilizing 
tendency, in the absence of the effect of the electromagnetic field in the liquid and gas cylinder region, so the model is 
only subject to the capillary force. It has been found that the model is unstable in the region 0 < x < 1, while it is stable in 
the region 1 ≤ x < ∞ where x is the longitudinal dimensionless wave number. This means that the model is just unstable in 
small domains of axisymmetric perturbation but it stables in all domains. For very high intensity of magnetic field the model 
is completely stable for all values of wavelengths. The capillary force is destabilizing only in a small axisymmetric domain 
while it is stabilizing in all other axisymmetric perturbations. The stability behavior of the model comes after destabilizing 
behavior of the model when it be reduced and suppressed. 
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= ( )H u H
t

∂
∇× ×

∂
				                  (8)

In the region surrounding the gas cylinder, we have 

= 0,gH∇× 					                    (9)

= 0,.gH∇ ⋅ 					                  (10)

and along the gas- liquid interface the curvature pressure is, 

= ( . ),sP T N− ∇ 	 (11)

where H  and gH  are the magnetic field intensities in the gas and liquid 
regions, ρ is the mass density, u  velocity vector, P kinetic pressure, 
and Ps the curvature pressure due to the capillary force, T the surface 
tension coefficient, N  is the unite outward normal vector to the gas-
liquid interface. In the unperturbed state equation (4) reduces to 

( ( . ) ) ( ) = ,u u u H H
t

ρ µ∂
+ ∇ − ⋅∇ −∇Π

∂
			                (12)

= ( ),
2

P H Hµ
Π + ⋅ 				                 (13)

where Π is the total hydromagnetics pressure which is the sum of the 
liquid kinetic pressure and magnetic pressure, and equation (8) can be 
rewritten as 

( . ) = ( ) ,H u H H u
t

∂
+ ∇ ⋅∇

∂
				                (14)

using the equations (4)  and (14) we get, 
2
0

0 = ,
2
HP constantµ

+ 				                (15)

0
0

= .s
TP

R
−

					                   (16)

The continuity of the total stress tensor across the gas-liquid 
interface at (r = R0) yields, the unperturbed pressure P0 of the liquid as

2
20

0 0
0

= ( 1) .
2

µ α−
+ − + gHTP P

R
			               (17)

Here 0
gP  is the gas constant pressure in the initial state, 

0

( )T
R
−  is the 

contribution of capillary force, while 
2

20( ( 1))
2
Hµ α −  is the net magnetic 

pressure due to the effect of electromagnetic force acting in the gas and 
liquid regions, 

Perturbation analysis

For small departures from the equilibrium state due to an 
infinitesimal perturbation every perturbed quantity Q(r, q, z, t) can be 
expanded as; 

0 1( , , , ) = ( ) ( ) ( , , )Q r z t Q r t Q r zϕ ε ϕ+ 			                 (18)

where the quantities with subscript 0 are those of equilibrium while 
those with 1 are small increments due to the perturbation. The Q(r, ϕ, 
z, t) stands for ( ), ,gH H  p and ,U  Ps and N and the perturbed radial 
distance of the fluid cylinder.

The amplitude ε of the perturbation is given by 

0( ) = ( ).t exp tε ε σ 				                                  (19)

Where ε0 is the initial amplitude at (t=0) and σ is the temporal 
amplification of instability. Consider a sinusoidal wave along the gas-
liquid interface, using a single fourier term, the perturbed cylinder 
radial distance of the gas jet is described by 

0 1= ,r R R+ 					                 (20)

where 

1 0= ( ).R exp t ikzε σ + 				                 (21)

Is the elevation of the surface wave measured from unperturbed 
position. Here K (any real number) is the longitudinal wave number, 
and m an integer is the azimuthal wave number. In view of the foregoing 
expansions (18 - 21), the relevant perturbation equations are given as 
follows. For the interior of the cylindrical jet

1
10 1 0( ( ) ) ( ) = ,u u u H H

t
ρ µ∂

+ ⋅∇ − ⋅∇ −∇Π
∂

		                (22)

where 

11 0= ( ),P H HµΠ + ∇ ⋅ 				                   (23)

and by using equations (6), (7) and (8) we get, 

1 = 0u∇ ⋅ 					                     (24)

1 = 0H∇ ⋅ 					                   (25)

1
110 0= ( ) ( )H H u u H

t
∂

⋅∇ − ⋅∇
∂

			                 (26)

In the gas region, 

1 = 0,gH∇× 					                   (27)

1 = 0gH∇ ⋅ 					                   (28)

as along the gas-liquid interface, 
2

2
1 1 0 12 2

0

= ( ) .s
TP R R R

R z
− ∂

+
∂

				                (29)

Based on the equations (18 - 21) every fluctuating quantity Q1(r, 0, 
z, t) could be written as 

1 1( ,0, , ) = ( )exp( ).Q r z t Q r t ikzσ + 			                 (30)

By the aid of this expansion, equations (22) and (24) are combined 
to give magnetic field intensity in the form, 

1
1 10= ( sin ) .H ikH ikU t uσ −+ Ω 			              (31)

Since the liquid is assumed to be non-dissipative and irrotational, 
the velocity 1u  could be derived from a scalar function Φ1(r, 0, z, t) 
such that, 

1 1= .u ∇Φ 					                   (32)

Combining equations (24) and (32) we get, 
2

1 = 0,∇ Φ 					                   (33)

by using equation (28) means the magnetic field 1
gH  could be 

derive from a scalar functions say 
1
gΨ , such that 

1 1=g gH ∇Ψ 					                    (34)

Combining equations (28) and (34) we get, 

2
1 = 0,g∇ Ψ 					                  (35)

by using equations (22) and (31) we find, 

1 12 2
( sin )= ,

( sin )
ikU tu

ikU t L
σ

ρ σ
+ Ω

⋅∇Π
+ Ω +

			                (36)

where 
2 2

0= k HL µ
ρ

. So by using equations (24) we get, 
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The magneto-dynamic condition

This condition is being "the normal component of the magnetic 
field must be continuous across the gas-liquid interface at (r = 
R0)",mathematically this condition is given by

1 0 1 00 1 0 1= g gN H N H N H N H⋅ + ⋅ ⋅ + ⋅ 			                (50)

with 0 = (1,0,0)N  and 1 = (0,0, ) exp( )N ik t ikzσ− + ,// if we put 0 1,N N  in 
equation (50) we have,

1 10 0exp( ) = exp( ),g
r rH ikH t ikz H ik H t ikzσ α σ− + − + 	                (51)

where 

1
1 10= ( sin ) ,r rH ikH ikU t uσ −+ Ω 			                (52)

by using equations (46), (40) and (34) we get, 

1 1 2 0 0= = ( )exp( )g g
r rH C k I kr ikz tε σ′Ψ + 			               (53)

substituting in equation (51) we get the value of 

0
2

0

=
( )

i HC
I kr
α
′

					                    (54)

Stresses condition 

This condition is being" The jump of the normal component of 
the stresses in the gas and liquid regions must be discontinuous by the 
surface pressure P1s across the cylindrical gas-liquid interface at (r = R0) 
". This condition is being

20
0 11 0 1exp( ) ( ) exp( ) (2 ) = .

2
g g

Sikx t H H ikz t H p
r r

µσ µ σ∂Π ∂
Π + + − ⋅ − +

∂ ∂
(55)

From this equation we get the dispersion relation
2 2

2 2 2 2 0
2
0

2 sin cos =sin
H xikU t ikU t k U t

R
µσ σ
ρ

+ Ω + Ω Ω − Ω +

2
2 2 2 20 0 0 0

3 2
0 0 0 0 0

( ) ( ) ( )(1 )( ) ( )
( ) ( ) ( )

xK X H I x K xT x x x
R K X R I x K x

µ α
ρ ρ

′ ′−
− + − + +

′
	             (56)

General Discussion
The relation (56) is the dispersion equation of a fluid cylinder 

acting upon the electromagnetic force. It relates the growth rate σ with 
the modified Bessel function I0(x) and K0(x) and their derivative, the 
wave number m and x, the amplitude U of the streaming velocity, Ω 
the oscillation frequency of the oscillating streaming, α the parameter 
of the magnetic field in the gas cylinder and with the parameters T, ρ, 
R0, µ and H0 of the problem. One has to mention here that the relation 

(56) contains 3
0

( )T
Rρ

 as well as 
2
0
3
0

( )H
R

µ
ρ

 as unit of (time)2 and this fact 

is vital in formulating (56) in dimensionless form. Relation (56) is a 
simple linear combination of eigenvalue relations of gas-liquid cylinder 
subject to the electromagnetic force only.It is remarkable that in the 
axisymmetric mode at m = 0 for a fluid cylindrical jet pervaded by 
constant axial field, subject to its own attraction and lorentz force. 
This character of a simple linear combination is also true if the acting 
force are the capillary and electromagnetic forces. Whether the model 
are a full liquid-gas cylinder. The physical interpretation of such 
phenomenon is given explicitly in this paper reference. Since the 
relation (56) is somewhat more general, several stability criteria can 
be obtained as limiting cases from the eigenvalue of relation (60). The 
discussion of this equation reveals that the uniform streaming of the 
liquid has destabilizing effect, and that effect is valid not only in the 
axisymmetric mode m = 0.

If we assume that U = 0, then the eigenvalues relation(56) will be 

= 0.∇ Π 					                  (37)

Now,we may see that the system of perturbed equations (22) and 
(24 -28) could be solved, as Laplace,s equations (33), (35) and (37) are 
solved for this task, we may write the expansion 

1 1 0( ,0, , ) = ( ) exp( ),Q r z t Q r t ikzε σ + 			                   (38)

for Φ1(r, 0, z, t), Ψ1(r, 0, z, t) and 1(r, 0, z, t). Substituting equation 
(38) into equations (33), (35) and (37), we obtain the total second order 
differential equation of Bessel. For the problem under consideration, 
the nonsingular solutions of (33), (35) and (37),are given by 

1 1 0 0( ,0, , ) = ( )exp( ),r z t C K kr ikzεΦ 			                (39)

1 2 0 0( ,0, , ) = ( )exp( ),g r z t C I kr ikzεΨ 			               (40)

1 3 0 0( ,0, , ) = ( )exp( ),r z t C K kr ikzεΠ 			                (41)

Where C1,C2 and C3 are constant of integration to be determined, 
while K0 and I0 are Bessel functions of the first and second kind order m 
= 0. Along the gas-liquid cylinder fluid interface, the surface pressure in 
the perturbed state due to the capillary force, in view of equations (22) 
and (29), given by 

2
1 02

0

= (1 ) exp( ),s
TP x ikz
R

ε− 				                 (42)

Where (x = kR0) is the longitudinal dimensionless wave number. 

Boundary Condition
The solution of the unperturbed and perturbed sates equations 

(39),(41) must satisfy appropriate boundary condition across the fluid 
interface at (r = R0), these conditions are given as follows 

Kinematic condition

The first condition states that "the normal component of the velocity 
u  of the liquid must be compatible with the perturbed boundary gas-
liquid at (r = R0). This condition is given, 

0( ) = 0,F u F
t

∂
+ ⋅∇

∂
				                 (43)

so we can get 

1 0= ( sin ) exp( ),ru ikU t ikz tσ ε σ+ Ω + 			                 (44)

by using equation (39) and (32) we have, 

1
1 1 0 0= = ( )exp( ),ru C k k kr ikz t

r
ε σ∂Φ ′ +

∂
			                 (45)

then, 

1
0

( sin )= .
( )

ikU tC
kk kr

σ + Ω
′

				                 (46)

The second boundary condition could be described and utilized as 
follows, by using equations (24) and (31) we have 

2 2
0 11 1

1( ( sin ) ) = ,
( sin )

rr
r

H k uu ikU t u
t ikU t r

µρ
σ

∂ −∂Π
+ Ω +

∂ + Ω ∂
	                (47)

where, 

1
3 0 0= ( ) exp( ),C KK kr ikz t

r
ε σ−∂Π ′− +

∂
			                  (48)

by using equation(48) we obtain, 
2 2

2 2 2 2 0
3 2

0 0

= ( 2 sin cos )sin( )
H xC ikU t ikU t k U t

KK KR R
µρ σ σ
ρ

−
+ Ω + Ω − Ω +

′
(49)
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2
2 2 2 2 20 0 0 0

3 2
0 0 0 0 0

( ) ( ) ( )= (1 )( ) ( )
( ) ( ) ( )

xK X H I x K xT x x x
R K X R I x K x

µσ α
ρ ρ

′ ′−
− + − + +

′
             (57)

In order to examine the effects of the capillary and magneto-
dynamic forces on the stability of the present model, we have to write 
down about some properties of the modified Bessel functions, consider 
the recurrence relation 

1 1( ) = 0.5( ( ) ( )),m m mI x I x I x− +′ +              (58)

1 1( ) = 0.5( ( ) ( )),m m mK x K x K x− +′ − −             (59)

by using the Wronskian relation, 
1

0 0 0 0 0 0 0( ( ), ( )) = ( ) ( ) ( ) ( ) =W I x k x I x K x K x I x x−′ ′− −                (60)

0 1 0 1( ) = ( ), ( ) = ( ).I x I x K x K x′ ′ − 			              (61)

Then the dispersion relation will be 
2 2 2 22 sin cos =sinikU t ikU t k U tσ σ+ Ω + Ω Ω − Ω

2
2 2 2 20 0 11

3 2
0 0 0 1 0

( ) ( )( )(1 )( ) ( )
( ) ( ) ( )

H I x K xxK XT x x x
R K X R I x K x

µ α
ρ ρ
−

− − − + +                (62)

so, at U = 0, Ω = 0, H0 = 0, the relation (62) reduces to 

2 2 1
3
0 0

( )= (1 )( )
( )

xK XT x
R K X

σ
ρ
−

−              (63)

This relation has been given by Drazin and Reid [12], which is valid 
for all axisymmetric and non-axismmetric modes (m = 0, m ≥ 1) of 
perturbation.

The discussion of the dispersion relation (63) reveals that
2

3
0

( ) > 0T
R

σ

ρ
 as (0 < x < 1) when (m = 0) 

This,means that the hollow gas jet is capillary unstable only in the 
axisymmetric mode (m = 0) in the small domain (0 < x < 1).

As at (U = 0, T0 = 0, and Ω = 0) we have from equation (62) 
2

2 2 2 20 0 1
2
0 1 0

( ) ( )= ( ).
( ) ( )

H I x K xx x
R I x K x

µσ α
ρ

− − + + 			              (64)

The axial magnetic field pervaded in the liquid is represented by 

the term 
2

20
2
0

( ( ))H x
R

µ
ρ

− . It has strong stabilizing effect and that effect is

independent of the perturbed modes (m = 0) and (m = 1). The effect 
of the magnetic field pervaded in the gas cylinder is represented by the 

term 2 2 0 1

1 0

( ) ( )[ ]
( ) ( )

I x K xx
I x K x

α +  followed by 
2
0
2
0

( )H
R

µ
ρ

. It has strong stabilizing 

effect and this effect is valid for all axisymmetric mode m = 0 and non 
axisymmetric modes m = 1. So we see that the present model is purely 
stabilizing under the acting electromagnetic forces in gas and liquid 
regions.

Conclusion
From the foregoing discussions, we may conclude the following:

(1) The axial magnetic field pervaded interior the fluid cylinder has 
stabilizing effect.

(2) The stability behavior of the model comes after the destabilizing 
behavior of the model when it be reduced and suppressed.

(3) The capillary force is destabilizing only in a small axisymmetric 
domains and all domains of non-axisymmetric perturbations.

(4) The present model is purely stabilizing under the acting
electromagnetic in gas and liquid regions.

(5) For very high intensity of magnetic field the destabilizing
character of the model could be suppressed completely for all value of 
wave lengths.
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