Mathematical Modelling and Computer Simulation

Huang Y1*, Zhang H2 and Laibin G2
1School of Mathematics and Information Science, Anshan Normal University Anshan 114005, P. R. China
2School of Information and Technology, Jilin Agricultural University Changchun 130118, P. R. China

Abstract

This article adopts and analyzes a stochastic collocation method to approximate the solution of four order elliptic partial differential equations with random coefficients and forcing terms, which are applied for some mathematical-biology model. The method is composed of a Galerkin finite approximation in space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space, and natural brings on the solution of uncoupled deterministic problems. The well-posedness of the elliptic partial differential equations is investigated as well under some regular assumptions. Strong error estimates for the fully discrete solution using L2 norms are obtained in this work.

Keywords: Collocation techniques; Galerkin finite element methods; Stochastic PDEs; Smolyak approximation

Introduction

Mathematical modeling and computer simulation are nowadays widely used tools to predict the behavior of biological research problems. To illustrate the idea, we consider nonlocal effects and long range diffusion mathematical biology model [1]. The classical approach to diffusion is the following form

\[
\frac{\partial u(x, t)}{\partial t} = \nabla \cdot (\nabla u(x, t)) + f(u, x, t)
\]

where \(u(x, t)\) is the concentration of the species and \(\alpha_i\) is the diffusion coefficient. Situations where \(\alpha_i\) is space-dependent are arising in more and more modeling situations of biomedical importance from diffusion of genetically engineered organisms in heterogeneous environments to the effect of white and grey matter in the growth and spread of brain tumors. The source term or forcing term \(f\) in an ecological context, for example, could represent the birth-death process. However, the equation (1) is strictly only applicable to dilute systems, that is the diffusion is a local or short range effect. In many biological areas, such as embryological development, the densities of cells involved are not small and a local or short range diffusive flux proportional to the gradient is not sufficiently accurate. When we discuss the mechanical theory of biological pattern formation in certain circumstances, it is intuitively reasonable, perhaps necessary, to include long range effects. In 1969, Othmer derived the following formulation (1).

\[
\frac{\partial u(x, t)}{\partial t} = \nabla \cdot (\nabla u(x, t)) - \Delta (\Delta u(x, t)) + f(u, x, t)
\]

where \(\alpha_i > 0\) and \(\alpha_i\) is a measure of the long range effects and in general is smaller in magnitude than \(\alpha_i\). The biharmonic term is stabilizing if \(\alpha_i > 0\), or destabilizing if \(\alpha_i < 0\). In this form, the first term represents an average of nearest neighbors and the second biharmonic term is a contribution from the average of nearest averages.

We then consider the stationary Dirichlet boundary value problem of the equation (2)

\[
-\nabla \cdot (\nabla u) + \Delta (\Delta u) = f(u, x)
\]

\[
u(x) = 0, \text{on } \partial D,
\]

\[
\frac{\partial u(x)}{\partial n} = 0, \text{on } \partial D
\]

where \(D\) represents the species living area, which can be considered bounded and the Dirichlet boundary condition can be interpreted as the number of the species is zero on the boundary of the domain \(D\). Yet many biological applications are affected by a relatively large amount of uncertainty in the input data, such as model coefficients, source term/forcing term, boundary conditions, and geometry. In the case, to obtain a reliable numerical prediction, one has to include uncertainty quantification due to uncertainty in the input data. In this paper we focus on problem (3) with a probabilistic description of the uncertainty in the input data. Let \(D\) be a convex bounded polygonal domain in \(\mathbb{R}^d\), \((d = 1, 2, 3)\) and \((\Omega, \mathcal{F}, P)\) be a complete probability space, where \(\Omega\) is the set of outcomes, \(\mathcal{F}\) is the \(\sigma\)-algebra of events, and \(P: \mathcal{F} \to [0,1]\) is probability measure. Consider the stochastic linear fourth-order elliptic boundary value problem: find a random function \(u(\omega, x): \Omega \times \mathbb{R} \to \mathbb{R}\) such that \(P\)-almost everywhere (a.e.) in \(\Omega\), or in other words, almost surely (a.s) the following equations hold

\[
-\nabla \cdot (\nabla u(\omega, x)) + \Delta (\Delta u(\omega, x)) = f(\omega, x), \text{on } D,
\]

\[
u(\omega, x) = 0, \text{on } \partial D,
\]

\[
\frac{\partial u(\omega, x)}{\partial n} = 0, \text{on } \partial D.
\]

We make the following assumptions:

\(\mathcal{A}\) \(\alpha(\omega, x), \alpha(\omega, x)\) is uniformly bounded, i.e. there exist \(a_{\max}, a_{\min} > 0\) such that

\[
P(\omega \in \Omega: \alpha(s, x) \in [a_{\min}, a_{\max}], \forall x \in D, i = 1,2) = 1
\]

where \(D\) is the closure of \(D\).

\(\mathcal{A}\) \(\mathcal{A}\) is square integrable with respect to \(P\), i.e. \(\int_{\Omega} E[^2] \text{d}x < \infty\) this article will establish a stochastic collocation method for problem

*Corresponding author: Huang Y, School of mathematics and information science, Anshan Normal University, Anshan, 114005, P. R. China, Tel: +86 0412-2960120; E-mail: huangyujie426@163.com

Received February 15, 2016; Accepted February 24, 2016; Published March 01, 2016

Copyright: © 2016 Huang Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
(1). To describe the method, we first introduce used spaces as follows

\[H = L^2(D) = \left\{ v : \int_D |v|^2 \, dx < \infty \right\} \]

and

\[L^2(D) = \left\{ v : \int_D \text{ess sup}_{x \in D} |v(x)| \, dx < +\infty \right\} . \]

Denote \(a = (a_{i,j})_{i,j} \), \(a_{i,j} \) is nonnegative integers, \(i = 1, \ldots, n \), the length of \(a \) is given by \(|a| = \sum_i a_i \). Suppose that the weak derivatives \(\partial^a \) exist for all \(|a| \leq k \), where \(k \) is nonnegative integer, and define the Sobolev space.

\[H^k(D) = \left\{ v : D^k v \in L^2(D), |a| \leq k \right\} . \]

The space \(H^k(D) \) is endowed with the norm associated to the inner product

\[(v, w) = \int_D v \overline{w} \, dx \]

and the corresponding norm

\[\|v\|_{H^k(D)}^2 = \int_D |v|^2 \, dx . \]

Define Semi-norm in the Sobolev space \(H^k(D) \)

\[\|v\|_{H^k(D)} = \left(\sum_{|a| \leq k} \int_D |\partial^a v|^2 \, dx \right)^{1/2} . \]

Denote by \(H^k_0(D) \) the closure of \(C_0^\infty(D) \) with the norm \(\| \cdot \|_{H^k(D)} \) in \(H^k(D) \). Let \(v \in H^k_0(D) \) be strongly measurable and Define

\[L^2_0(\Omega, H^k_0(D)) = \left\{ v : \Omega \to H^k_0(D) \right\} , \]

and

\[L^2_0(\Omega, H^k_0(D)) = \left\{ v : \Omega \to H^k_0(D) \right\} . \]

Next, using the Green formula, problem (4) can be written in the following weak form: find \(u \in L^2_0(\Omega, H^k_0(D)) \) such that

\[\int_{\Omega} \left[\alpha_1 \nabla u \cdot \nabla v + \alpha_2 \nabla u \cdot \nabla v \right] \, dx = \int_{\Omega} f \cdot v \, dx, \forall v \in L^2_0(\Omega, H^k_0(D)) . \]

Finally, we discuss the well-posedness of problem (5). To the end, we quote the following Poincare’s inequality

\[\|u\|_{H^1(D)} \leq C_D \|u\|_{H^0_0(D)} , \]

with \(C_D = C_D(D, n, k) > 0 \), [2].

Lemma 3.1: Under assumptions \((A_1)\) and \((A_2)\), problem (2) admits a unique solution \(u \in L^2(\Omega, H^k_0(D)) \) which satisfies the following estimate

\[\|u\|_{L^2(\Omega, H^k_0(D))} \leq \frac{C_{L^2(\Omega, H^k_0(D))}}{\frac{C_{H^k_0(D)}}{C_{L^2(\Omega, H^k_0(D))}}} \left(\int_D f^2 \, dx \right)^{1/2} . \]

Proof: Define a bilinear form on \(L^2_0(\Omega, H^k_0(D)) \)

\[a(u, v) = \int_{\Omega} \left[\alpha_1 \nabla u \cdot \nabla v + \alpha_2 \nabla u \cdot \nabla v \right] \, dx . \]

We will prove \(a(\cdot, \cdot) \) is continuous and coercive.

\[|a(u, v)| \leq \int_{\Omega} \left[\alpha_1 \nabla u \cdot \nabla v \right] \, dx + \int_{\Omega} \left[\alpha_2 \nabla u \cdot \nabla v \right] \, dx \leq C_{H^k_0(D)} \|u\|_{H^k_0(D)} \|v\|_{H^k_0(D)} . \]

By the Poincare’ inequality, we have

\[a(u, u) \geq \frac{\alpha_{\text{min}}}{\alpha_{\text{max}}} \int_{\Omega} f^2 \, dx . \]

Where \(C_p = \min \{C_1(D, n, 1), C_2(D, n, 2)\} \). Thus, problem (5) admits a unique solution \(u \in L^2(\Omega, H^k_0(D)) \) by the Lax-Milgram theorem, moreover, the following estimate holds

\[\|u\|_{L^2(\Omega, H^k_0(D))} \leq \frac{C_p}{\alpha_{\text{min}}} \left(\int_{\Omega} f^2 \, dx \right)^{1/2} . \]

The proof is now complete.

Finite-Dimensional Noise Assumption

In many problems the source of randomness can be approximated using just a small number of uncorrelated, sometimes independent, random variables, for example, the case of a truncated Karhunen-Loeve expansion [3]. This motivates us to make the following assumption.

Assumption: The coefficients and forcing terms used in the computations have the forms

\[a(\cdot, \cdot) = a(Y_1(\cdot), Y_2(\cdot), \ldots, Y_n(\cdot), \cdot), \]

and

\[f(\cdot, \cdot) = f(Y_1(\cdot), Y_2(\cdot), \ldots, Y_n(\cdot), \cdot), \]

where \(N \in \mathbb{N} \) and \(\{Y_i\}_{i=1}^n \) are real-value random variables with mean value zero and unit variance. Denote with \(\Gamma = \Gamma(Y), \) the image of \(Y, \Gamma = \Gamma(Y) = \sum_{i=1}^N \Gamma_i, \) where we assume \(\text{Yn}(\cdot), \) to be bounded, without loss of generality we can assume \(\Gamma_i = [-1, 1], \) and we suppose that the random variables \(Y = [Y_1(\cdot), Y_2(\cdot), \ldots, Y_n(\cdot)] \) have a joint probability density function \(P : \Gamma^N \to \mathbb{R}^N, \) with \(P \in L^p(\Gamma) . \)

After making Assumption, the solution \(u \) of the stochastic fourth-order elliptic boundary value problem (5) can be described by just a finite number of random variables, i.e., \(u(\cdot, \cdot) = u(Y_1(\cdot), Y_2(\cdot), \ldots, Y_n(\cdot), \cdot) \). Then, the goal is to approximate the \(u(\cdot, \cdot) \) whenever \(y \in \Gamma^N \) and \(x \in \Omega \). Observe that the stochastic variational formulation (5) has a deterministic equivalent which is the following: find \(u \in L^2_0(\Gamma^N, H^k_0(D)) \) such that

\[\int_{\Omega} \left[\alpha_1 \nabla u \cdot \nabla v + \alpha_2 \nabla u \cdot \nabla v \right] \, dx = \int_{\Omega} f \cdot v \, dx, \forall v \in L^2_0(\Omega, H^k_0(D)) . \]

where

\[L^2_0(\Gamma^N, H^k_0(D)) = \left\{ v : \Omega \to H^k_0(D) \right\} . \]

Since the solution of (1.6) is unique and is also a solution of (5), it follows that the solution has the form \(u(\cdot, \cdot, y) = u(Y_1(\cdot), Y_2(\cdot), \ldots, Y_n(\cdot), \cdot) \).

The stochastic boundary value problem (4) now becomes a deterministic boundary value problem (6) for a fourth-order elliptic PDE with an \(N \)-dimensional parameter. For convenience, we consider the solution \(u \) as a function \(u : \Gamma^N \to H^k_0(D) \) and use the notation \(a(\cdot, \cdot, y) \) whenever we want to highlight the dependence on the parameter \(y \). We use similar notation for the coefficient \(\alpha_1, \alpha_2, \) and the forcing term \(f \). Given \(u \in L^2_0(\Gamma^N, H^k_0(D)) \), it can be shown that problem(4) is equivalent to

\[\int_{\Omega} \left[\alpha_1 \nabla u \cdot \nabla v + \alpha_2 \nabla u \cdot \nabla v \right] \, dx = \int_{\Omega} f \cdot v \, dx, \forall v \in L^2_0(\Gamma^N, H^k_0(D)) . \]

Thus, we turn the original stochastic fourth-order elliptic equation into a deterministic parametric fourth-order elliptic equation and we will adopt finite element technique to approximate the solution of the
resulting deterministic problem.

Regularity Assumption

The convergence properties of the collocation techniques that will be developed in the next section depend on the regularity that the solution \(u \) has with respect to \(y \). Denote \(\Gamma_s = \prod_{i=1}^s \Gamma_i \), and let \(y_s \) be an arbitrary element of \(\Gamma_s \). Here we require the solution of problem (4) to satisfy the following assumption. To make this assumption, we introduce the functional space

\[
C^0(\Gamma_s; H_0^s) = \{ v: \Gamma_s \rightarrow H_0^s(D) \mid \max_{y_s \in \Gamma_s} \| v(y_s) \|_{L^2(\Omega)} < +\infty \},
\]

where \(v \) is continuous in \(y \).

Assumption: For each \(y_s \in \Gamma_s \), there exists \(\tau_s > 0 \) such that the function \(u(y_s, y_s', x) \) of \(y_s, y_s': \Gamma_s \rightarrow C^0(\Gamma_s; H_0^s(D)) \), admits an analytic extension \(u(z, y_s, x), z \in \mathbb{C} \), in the region of the complex plane

\[
\sum (\Gamma_s \times \tau_s) = \{ z \in \mathbb{C}, \text{dist}(z, \Gamma_s) < \tau_s \}.
\]

Moreover, \(\forall z \in \sum (\Gamma_s \times \tau_s) \)

\[
\| v(z) \| C^0(\Gamma_s; H_0^s(D)) \leq \lambda,
\]

with \(\lambda \) a constant independent of \(n \).

The following lemma will verify that this assumption is sound.

Lemma 5.1: Under the assumption that there exists \(y_n < \infty \) for every \(y = (y_n, y_n') \in \Gamma \) such that

\[
\| v(y) \|_{L^2(\Omega)} \leq y_n^k \text{ and } \| v(y) \|_{L^2(\Omega)} \leq y_n^k k!.
\]

Then, the solution \(u(y_n, y_n', x) \) of problem (7) as a function of \(y, y': \Gamma \rightarrow C^0(\Gamma; H_0^s(D)) \), admits an analytic extension \(u(z, y_s', x), z \in \mathbb{C} \), in the region of the complex plane

\[
\sum (\Gamma_s \times \tau_s) = \{ z \in \mathbb{C}, \text{dist}(z, \Gamma_s) < \tau_s \},
\]

with \(0 < \tau_s < 1/(2\tau_n) \), moreover, for all \(z \in \sum (\Gamma_s \times \tau_s) \)

\[
\| v(z) \| C^0(\Gamma_s; H_0^s(D)) \leq C_0 \| v(y_s) \|_{C^0(\Gamma; H_0^s(D))} + 1 \cdot (1 + \| v(y_s) \|_{C^0(\Gamma; H_0^s(D))}) + 1 \cdot (1 + \| v(y_s) \|_{C^0(\Gamma; H_0^s(D))}),
\]

where \(C_0 \) is a constant depending on \(a_{\text{max}}, a_{\text{min}} \) and Poincare's constant \(C_p \).

Proof: For simplicity, we first study the following problem: there exists \(u \in L^2(\Gamma) \cap H_0^s(D) \) such that

\[
\int_{\Gamma} \rho(\alpha u, \Delta v) dx = \int_{\Gamma} \rho(f, v) dx \forall v \in C^0(\Gamma) \cap H_0^s(D).
\]

For every point \(y \in \Gamma \), the \(k \)-th derivative of \(u \) with respect to \(y_i \) is obtained by above equation, which satisfies as follows

\[
\int_{\Gamma} \partial_{y_i} \partial_{y_i} u \Delta v dx = \int_{\Gamma} \partial_{y_i} \partial_{y_i} \alpha u \partial_{y_i} v dx + \int_{\Gamma} \partial_{y_i} \partial_{y_i} f v dx.
\]

Taking \(\phi = \partial_{y_i}^k u \), we obtain the following form

\[
\| \partial_{y_i}^k u \|_{L^2(\Omega)} \leq \int_{\Gamma} \rho(\alpha u, \Delta v) dx \forall v \in C^0(\Gamma) \cap H_0^s(D).
\]

By Lemma 5.1, the following estimate holds

\[
\| \partial_{y_i}^k u \|_{L^2(\Omega)} \leq \int_{\Gamma} \rho(\alpha u, \Delta v) dx \forall v \in C^0(\Gamma) \cap H_0^s(D).
\]

(11) follows from (12) and (13). Using that \(\| \partial_{y_i}^k u \|_{L^2(\Omega)} \leq \int_{\Gamma} \rho(\alpha u, \Delta v) dx \forall v \in C^0(\Gamma) \cap H_0^s(D) \), we obtain

\[
\| \partial_{y_i}^k u \|_{L^2(\Omega)} \leq \int_{\Gamma} \rho(\alpha u, \Delta v) dx \forall v \in C^0(\Gamma) \cap H_0^s(D).
\]

Hence (11) and (14) imply
\[
\frac{\|x^n u\|_{L^2(\Omega)}}{k!} \leq \frac{C^n_k}{\sqrt{a_{\text{max}}} (1 + \|f\|_{L^2(\Omega)})} \left(2\gamma_k\right)^k.
\]

For every \(y_\nu \in \Gamma^w\), we get the final estimates on the growth of the derivatives of \(u\).

\[
\frac{\|x^n u\|_{L^2(\Omega)}}{k!} \leq \sqrt{\frac{C^n_k}{a_{\text{max}}} (1 + \|f\|_{L^2(\Omega)})} \left(2\gamma_k\right)^k \leq C_\omega \left(1 + \|f\|_{L^2(\Omega)}\right) \left(2\gamma_k\right)^k.
\]

where \(C_\omega = \frac{C^n_k}{\sqrt{a_{\text{max}}}^k}\).

For every \((y_\nu, y_\nu') \in \Gamma^w \times D\), we consider \(u(y_\nu, y_\nu') \in C^0(\Gamma^w; H^s(D))\) as a function of \(y_\nu, y_\nu' \in \Gamma^w \to C^0(\Gamma^w; H^s(D))\). Besides, for every \(y_\nu \in \Gamma^w\), define the power series \(u : C \to C^0(\Gamma^w; H^s(D))\) as follows

\[
(\sum_{k=0}^{\infty} \frac{d_k^\nu u(y_\nu, y_\nu')}{k!} (z - y_\nu)^k).
\]

Then, we will prove the uniform convergence of the power series (16) with norm in \(C^0(\Gamma^w, H^s(D))\).

\[
\frac{(z - y_\nu)^k}{k!} \leq \frac{C^n_k}{\sqrt{a_{\text{max}}} (1 + \|f\|_{L^2(\Omega)})} \left(2\gamma_k\right)^k \leq C_\omega \left(1 + \|f\|_{L^2(\Omega)}\right) \left(2\gamma_k\right)^k.
\]

Setting \(k = 0\), we have \(|z - y_\nu| \leq \gamma_k\), and in the ball \(|z - y_\nu| \leq \gamma_k\), we have

\[
(\sum_{k=0}^{\infty} \frac{d_k^\nu u(y_\nu, y_\nu')}{k!} (z - y_\nu)^k).
\]

Using \(\sum_{k=0}^{\infty} \frac{d_k^\nu u(y_\nu, y_\nu')}{k!} (z - y_\nu)^k\), the power series of \(u(y_\nu, y_\nu')\) admits uniform convergence, in addition,

\[
\sum_{k=0}^{\infty} \frac{d_k^\nu u(y_\nu, y_\nu')}{k!} (z - y_\nu)^k.
\]

Thus, we get \(\sum_{k=0}^{\infty} \frac{d_k^\nu u(y_\nu, y_\nu')}{k!} (z - y_\nu)^k\) converges uniformly for every \(y_\nu\). Let \(\tilde{u}(z, y_\nu, x)\) satisfy

\[
\tilde{u}(z, y_\nu, x) = \sum_{k=0}^{\infty} \frac{d_k^\nu u(y_\nu, y_\nu')}{k!} (z - y_\nu)^k,
\]

which implies \(\tilde{u}(z, y_\nu, x)\) admits an analytic extension in the region \(z \in \sum(\Gamma^w; \tau_\nu)\) and

\[
\tilde{u}(z, y_\nu, x) = u(z, y_\nu, x) \quad \forall z \in \sum(\Gamma^w; \tau_\nu).
\]

We get the following formula [4]

\[
\tilde{u}(z, y_\nu, x) = u(z, y_\nu, x) = \sum_{k=0}^{\infty} \frac{d_k^\nu u(y_\nu, y_\nu')}{k!} (z - y_\nu)^k, \quad |z - y_\nu| \leq \tau_\nu.
\]

Furthermore,

\[
\|\tilde{u}(z)\|_{C^0(\Gamma^w; H^s(D))} \leq \frac{C^n_k}{\sqrt{a_{\text{max}}} (1 + \|f\|_{L^2(\Omega)})} \left(2\gamma_k\right)^k + 1.
\]

Similarly, for the solution \(u(y_\nu, y_\nu', x)\) of problem (7), the conclusion which is above drawn is correct. This finishes the proof.

Example 1: Let us consider the case where the coefficient \(a(\omega, x)\) is expanded in a linear truncated Karhunen-Loeve expansion

\[
a(\omega, x) = b_0(x) + \sum_{\nu=1}^{N} \sqrt{\lambda_\nu} b_\nu(x) Y_\nu(\omega),
\]

where \(\lambda_\nu\) is the \(\nu\)th eigenvalue and \(Y_\nu(\omega)\) are independent Gaussian random variables with means zero and unit variance, i.e., \(E[Y_\nu] = 0, \operatorname{Cov}(Y_i, Y_j) = \delta_{ij}\), for \(i, j \in N\) where \(\delta_{ij}\) is the Kronecker symbol, besides, the functions \(c_\nu(x)\) are square integrable for almost every \(x \in \Omega\). Then, the function \(f\) belongs to the space \(C^0(\Gamma^w, L^2(D))\), we have

\[
\left\|\frac{d_k^\nu f (y_\nu)}{\alpha(\omega)} \right\|_{L^2(\Omega)} \leq \left\|\frac{d_k^\nu f (y_\nu)}{\alpha(\omega)} \right\|_{L^2(\Omega)} \leq \left\|\frac{d_k^\nu f (y_\nu)}{\alpha(\omega)} \right\|_{L^2(\Omega)} + 1.
\]

and can take \(Y_\nu = \sqrt{\lambda_\nu} b_\nu(x) Y_\nu(\omega)\). Hence, both choice fulfill the assumption in lemma 5.1.

Example 2: Let us consider the forcing \(f(\omega, x)\) of the form

\[
f(\omega, x) = c_0(x) + \sum_{\nu=1}^{N} c_\nu(x) Y_\nu(\omega),
\]

where \(Y_\nu(\omega)\) are independent Gaussian random variables with means zero and unit variance, i.e., \(E[Y_\nu] = 0, \operatorname{Cov}(Y_i, Y_j) = \delta_{ij}\), for \(i, j \in N\). Then, the function \(f\) belongs to the space \(C^0(\Gamma^w, L^2(D))\), we have

\[
\left\|\frac{d_k^\nu f (y_\nu)}{\alpha(\omega)} \right\|_{L^2(\Omega)} \leq \left\|\frac{d_k^\nu f (y_\nu)}{\alpha(\omega)} \right\|_{L^2(\Omega)} \leq \left\|\frac{d_k^\nu f (y_\nu)}{\alpha(\omega)} \right\|_{L^2(\Omega)} + 1.
\]

and we can take \(Y_\nu = \sqrt{\lambda_\nu} b_\nu(x) Y_\nu(\omega)\). Hence, both choice fulfill the assumption in lemma 5.1. In the case, the solution \(u\) is linear with respect to the random variables \(Y_\nu\).

Collocation Method

Collocation techniques

We seek a numerical approximation to the solution \((7)\) in a finite-dimensional subspace \(V_h^p\) based on a tensor product \(P_h^p\) @ \(H^r(D)\), where the following descriptions hold

\[
H_r(D) \subset L^2(\Omega)\]

is a standard finite element space of dimension \(N_h\), which contains continuous quintic piecewise polynomials defined on Argyris triangulations \(T_h\) that a maximum mesh spacing parameter \(h > 0\).

\[
P_h^p(\Gamma^w) \subset L^2(\Omega)\]

is the span of tensor product polynomials with degree at most \(p = (p_1, p_2, \cdots, p_N)\), i.e., \(P_h^p = \bigotimes_{m=1}^{N} P_{p_m}(\Gamma^w)\), with \(P_{p_m}(\Gamma^w) = \operatorname{span}(y_1^m, m = 0, \cdots, p_m)\), \(n = 1, \cdots, N\).

Hence the dimension of \(P_h^p\) is \(N_h = \Pi_{n=1}^{N} (p_n + 1)\). We will establish
Spatial Galerkin finite element approximation

We first introduce the semidiscrete approximation \(u_h : \Gamma^0 \to H_\mathcal{N}(D) \). Obtained by projecting (7) onto the subspace \(L_0^0(\Gamma^0) \otimes H_\mathcal{N}(D) \), as follows

\[
\begin{align*}
\int_{\Gamma^0} \rho\left((\alpha_n \nabla u, \nabla v)_{\Gamma^0} + (\alpha \Delta u, \Delta v)_{\Gamma^0} \right) dy &= \int_{\Gamma^0} f(v) dy, \quad \forall v \in \mathcal{E}_p(\Gamma^0) \otimes H_\mathcal{N}(D) \\
\end{align*}
\]

(17)

In order to prove error estimates for stochastic partial differential equation, we need estimates for deterministic fourth order elliptic problem. Let us consider the stationary deterministic problem

\[
\begin{align*}
-V \cdot (a(x) \nabla u) + \Delta (a(x) \Delta u) &= f(x), \quad x \in D \\
u |_{\partial D} &= 0, \quad \frac{\partial u}{\partial n} |_{\partial D} &= 0 \\
\end{align*}
\]

(18)

we make the following assumptions:

(\(AA_v \)) there exist \(a_{\min}, a_{\max} > 0 \) such that

\[
a(x) \in [a_{\min}, a_{\max}], \quad \forall x \in \overline{D}, f, t = 1, 2.
\]

(\(AA_2 \)) \(f(x) \) is a bilinear form on \(V \).

The variational form of problem (2.3) is to \(u \in H_0^2(D) \) such that

\[
a(u, v) = (a(x) \nabla u, \nabla v) + (a(x) \Delta u, \Delta v) \leq f, \phi >, \quad \forall \phi \in H_0^2(D) \quad (19)
\]

where \(<, > \) represents the duality pairing.

Let \(H_0^2(D) \) be the finite element space. The discrete problem (2.3) is to find \(u_h \in \mathcal{H}_h \) such that

\[
a(u_h, v) = (a(x) \nabla u_h, \nabla v) + (a(x) \Delta u_h, \Delta v) \leq f, \phi >, \quad \forall \phi \in \mathcal{H}_h.
\]

Then, we will estimate the error between \(u_h \) and \(u_h \). In order to get the estimate, we need the following two lemmas.

Lemma 6.1: Suppose the conditions (1) \((H_1(\mathcal{N}))\) is a Hilbert space, and \(V \) is (closed) subspace of \(H(\mathcal{N}) \) is a bilinear form on \(V \), which is continuous and coercive on \(V \), and that \(u \) solves, given \(f \in V^* \).

\[
a(u, v) = (a(x) \nabla u, \nabla v) + (a(x) \Delta u, \Delta v) \leq f, \phi >, \quad \forall \phi \in H_0^2(D).
\]

Proof: By Lemma 6.1, Continuity and coercivity of the bilinear form \(a(u; v) \) and Lemma 6.2, successively, we have

\[
\begin{align*}
\|u - u_h\|_{\mathcal{H}_h} &\leq \mathcal{C} \inf_{a_{\min} \leq a \leq a_{\max}} \|u - a\|_{\mathcal{H}_h} \\
&\leq \mathcal{C} \inf_{a_{\min} \leq a \leq a_{\max}} \|u - a\|_{\mathcal{H}_h} \\
&\leq \mathcal{C} \|u - a\|_{\mathcal{H}_h} \\
&\leq \mathcal{C} \|u - a\|_{\mathcal{H}_h} \\
\end{align*}
\]

where \(\mathcal{C} = \frac{CC_1}{a_{\min} a_{\max}} \). For error estimates for \(u \) in the \(L^2(D) \), we proceed by a duality argument. Let \(\phi \) be arbitrary in \(L^2 \), take \(\phi \in H^2(D) \) such that the following equation

\[
\begin{align*}
-V \cdot (a(x) \nabla \phi) + (a(x) \Delta \phi, \Delta \phi) &= f, v >, \quad \forall v \in H_0^2(D). \\
\end{align*}
\]

The variational formulation of this problem is to seek \(\phi \in H_0^2(D) \) such that

\[
\begin{align*}
(a(x) \nabla \phi, \nabla v) + (a(x) \Delta \phi, \Delta v) &= f, v >, \quad \forall v \in H_0^2(D). \\
\end{align*}
\]

Since \(u - u_h \in \mathcal{H}_h \), let \(\phi = u - u_h \), the solution exists uniquely. Using the Poincaré inequality, we have

\[
\begin{align*}
\|u - u_h\|_{\mathcal{H}_h} &\leq \mathcal{C} \|a_{\min} \|_{\mathcal{H}_h} \|u - a\|_{\mathcal{H}_h} \\
&\leq \mathcal{C} \|u - a\|_{\mathcal{H}_h} \\
\end{align*}
\]

By (2.5) and Lemma 2.2, together with \(u \leq u \), \(\phi \leq 0 \), \(\phi \in \mathcal{H}_h \), we get

\[
\begin{align*}
\|u - u_h\|_{\mathcal{H}_h} &\leq \mathcal{C} \|u - a\|_{\mathcal{H}_h} \\
&\leq \mathcal{C} \|u - a\|_{\mathcal{H}_h} \\
\end{align*}
\]
where \(\mathcal{C} = a_{n,m} C \mathcal{C} \). Therefore,
\[
\| y - u \|_{L^p(D)}^p \leq C H^p \| y \|_a^p
\]

Stochastic sparse grid collocation approximation

We then introduce the multidimensional Lagrange interpolant operator \(\mathcal{L} \) : \(C^p(\Gamma^p; H^0_2(D)) \rightarrow \mathcal{R}^p(\Gamma^p) \otimes H^0_2(D) \). For each dimension \(n = 1, 2, \ldots, \), let \(y_k, k = 1, \ldots, N_n \) be the abscissas for Lagrange interpolation on \(\Gamma \). For each \(n = 1, 2, \ldots, \), the Lagrange basis \(\{\psi_k\} \) of the space \(P_m \) satisfies \(I_{\psi_k}(y_k) = \delta_{jk}, \ j, k = 1, 2, \ldots, m + 1 \), and we set \(I_{\psi_k}(y) = \prod_{i=1}^n \psi_k(y_i) \). Then, the final approximation is given by
\[
\mathcal{L} u(y,x) = \sum_{i=1}^N a_i(y_i; x) I_{\psi_i}(y) , \quad a_i \in C^p(\Gamma^p; H^0_2(D))
\]
where \(a_i(y; x) \) is the solution of problem (17) for \(y = y_i, N_p \) is the number of indices. Equivalently, we introduce such that
\[
I_{\psi_i}(y) = \sum_{i=1}^N \psi_i(y_i; x) I_{\psi_i}(y) \quad \forall y \in C^p(\Gamma; H^0_2(D)).
\]

Full tensor product interpolation: In this section we brieﬂy recall interpolation based on Lagrange polynomials. We first introduce an index \(i \in N, i \geq 1 \). Then, for each value of \(i \), let \(\{v_{y_1}, \ldots, v_{y_N}\} \subseteq \Gamma^p \) be a sequence of abscissas for Lagrange interpolation on \(\Gamma \). For \(v \in C^p(\Gamma; H^0_2(D)) \), we introduce a sequence of one-dimensional Lagrange interpolation
\[
\mathcal{L} v(y,x) = \sum_{i=1}^N \psi_i(y_i; x) v(y) , \quad \psi_i \in C^p(\Gamma^p; H^0_2(D))
\]
where \(\psi_i = I_{\psi_i}(y) \) are the Lagrange polynomials of degree \(m_i - 1 \). In fact, formula (22) reproduces exactly all polynomials of degree less than \(m \). In the multivariate case \(N > 1 \), for each \(v \in C^p(\Gamma^p; H^0_2(D)) \) and the multi-index \(i = (i_1, \ldots, i_n) \in N^p \) we define the full tensor product interpolation formulas
\[
I_{\psi_i}(y) = (\psi_i \otimes \cdots \otimes \psi_i)(y) , \quad \forall y \in C^p(\Gamma; H^0_2(D))
\]
where \(\psi_i = I_{\psi_i}(y) \) are the Lagrange polynomials of degree \(m_i - 1 \). Clearly, the above product needs \(\prod_{i=1}^n m_i \psi_i \) function evaluations with \(I_{\psi_i}(y) \in \mathcal{P}_m(\Gamma^p; H^0_2(D)) \subseteq \mathcal{L}^p(\Gamma^p) \otimes H^0_2(D) \). Thus, for \(u \in C^p(\Gamma^p; H^0_2(D)) \), the following form holds
\[
I_{\psi_i}(y) = (\psi_i \otimes \cdots \otimes \psi_i)(y) = \sum_{i=1}^N \sum_{i_1=1}^N \cdots \sum_{i_n=1}^N u(y_1, \ldots, y_n) \psi_i(y_i; x) I_{\psi_i}(y_i)
\]
with \(I_{\psi_i}(y) \in \mathcal{L}^p(\Gamma^p) \otimes H^0_2(D) \). Denote \(\mathcal{E}_N = \{y_1, \ldots, y_N\}, a = 1, \ldots, N \) and \(\hat{y} = y \times \cdots \times y \). Moreover, let \(y = (y_1, \ldots, y_N) \in \hat{y} \) and \(I_{\psi_i}(y) = \psi_i \otimes \cdots \otimes \psi_i, k = 1, \ldots, N \), where \(\hat{N} \) represents the number of grid points of the set \(\hat{y} \). Let \(\hat{y} \{y_1, \ldots, y_N\} \) be a basis of \(\hat{y} \). To obtain \(\{y_1, \ldots, y_N\} \) in (24), setting \(y(x; y) = ik(y) \phi_j (x) \) in (17), \(j = 1, \ldots, Nh \) and using Numerical integration, which is based on the set \(\hat{y} \) with corresponding weights with corresponding weights, we obtain
\[
\sum_{i=1}^N \int_{\hat{y}} \left(\phi_i(y) \right) \left(\sum_{i=1}^N \sum_{i_1=1}^N \cdots \sum_{i_n=1}^N \psi_{i_1} \cdots \psi_{i_n} \right) I_{\psi_i}(y) \psi_i(y_i; x) \phi_j(x) \right) dx \]
For \(k = 1, \ldots, N \), using \(\phi_j(x) = \delta_{jk} \), we get \(\psi_{jk}(y; x) \) satisfies
\[
\left(a_i(y; x) \psi_{jk}(y; x) \right) + \left(a_i(y; x) \Delta u(y; x) \phi_j(x) \right) = \left(f(y; x) \phi_j(x) \right), \ j = 1, \ldots, N.
\]

Smolyak approximation

Here we follow closely the work [7] and describe the Smolyak isotropic \(\mathcal{L}(\rho, N) \). The Smolyak formulas are just linear combinations of product formula (23) with the following key properties: only products with a relatively a small number of points are used. With \(\rho = 0 \) and for \(i \in N \) define
\[
\Delta_i := \rho_i - \rho_{i-1}.
\]
Given a integer \(w \in N \), hereafter called the level, we define the sets
\[
X(w, N) := \{ i \in N^p, j \geq 1 : \sum_{i=1}^w (i - 1) \leq w \}
\]
\[
\bar{X}(w, N) := \{ i \in N^p, j \geq 1 : \sum_{i=1}^w (i - 1) = w \}
\]
\[
Y(w, N) := \{ i \in N^p, j \geq 1 : w - N + 1 \leq \sum_{i=1}^w (i - 1) \leq w \}
\]
for \(i \in N^p \) we set \(\| i \| = i_1 + \cdots + i_N \). Then the isotropic Smolyak formula is given by
\[
\mathcal{S}(w, N) = \sum_{i=1}^{i(w,N)} \left(\Delta_i \otimes \cdots \otimes \Delta_N \right),
\]
Equivalently, formula (28) can be written as [8]
\[
\mathcal{S}(w, N) = \sum_{i=1}^{i(w,N)} (-1)^{\rho_{i-1}-\rho_i} C(\rho_i, N) \left(\Delta_i \otimes \cdots \otimes \Delta_N \right)
\]
Unfortunately, A (w;N) (u), one only needs to know function values on the "sparse grid"
\[
\mathcal{S}(w, N) = \bigcup_{i=1}^{i(w,N)} \{ \mathbb{G}_i \} \subset \Gamma^N
\]
where \(\mathbb{G} = \{y_1, \ldots, y_N\} \subseteq \Gamma^p \) denotes the set of abscissas used by \(\mathcal{L} \).

Choice of collocation nodes

In this section, we will determine how to select the collocation nodes. To the end, we introduce a conclusion.

Lemma 6.3: Let \(\{y_{i_1, \ldots, i_N}\} \) be the \(p+1 \) roots of the \(p+1 \) degree \(\rho \)-orthogonal polynomial \(\Pi_{p+1} \) on the interval \(\Gamma \). Then, for every function \(v \in C^p(\Gamma; H^0_2) \) the interpolation error satisfies [9]
\[
\| v - I^{\rho}_p \|_{L^p(\Gamma; H^0_2(D))} \leq C(p, \rho) \inf_{w \in \mathcal{S}_p(\rho, N)} \| v - I^{\rho}_p \|_w \|_{L^p(\Gamma; H^0_2(D))},
\]
where the constant \(C_p \) is independent of \(p \).

This lemma relates the approximation error \(v - I^{\rho}_p \) in the \(L^p \)-norm with the best approximation, hence we propose to use Gaussian abscissas, i.e. the zeros of the orthogonal polynomials with respect to
some positive weight. The natural choice of the weight should be the probability density function ρ of the random variables $Y(i)$ for all i. However, in the general multivariate case, if the random variables $Y(i)$ are not independent, the joint density ρ does not factorize, i.e. $\rho(y_1, y_2, \ldots, y_n) \neq \prod_i \rho_i(y_i)$. Now, we introduce an auxiliary probability density function $\tilde{\rho} : \Gamma^n \to \mathbb{R}^+$ that can be seen as the joint probability of N independent random variables, i.e., it factorizes as
\[
\tilde{\rho}(y_1, y_2, \ldots, y_n) = \prod_{i=1}^N \tilde{\rho}_i(y_i), \quad \forall y = (y_1, y_2, \ldots, y_n) \in \Gamma^n,
\]
and is such that \(\int_{\Gamma^n} \frac{\rho}{\tilde{\rho}}(y) \, dy < \infty \) The auxiliary density $\tilde{\rho}$ should be chosen as close as possible to the true density ρ so as to have the quotient $\frac{\rho}{\tilde{\rho}}$ not too large. Indeed, such quotient will appear in final error estimate. For each dimension $n = 1, \ldots, N$, let the m_i Gaussian abscissas be the roots of the m_i degree polynomial that is $\tilde{\rho}_i$-orthogonal to all polynomials of degree less than m_i on the interval $[\Gamma, \Gamma]$, i.e.,
\[
\int_{\Gamma} q_n(y) \tilde{\rho}_i(y) \, dy = 0 \quad \text{for all} \quad y \in \mathcal{P}_{m_i}(\Gamma),
\]
In addition, let the number of abscissas m_i in each level to grow according to the following formula
\[
m_i = 2i - 1 \quad (33)
\]
Error Analysis

In this section we show error estimates that will help us understand the sparse grid stochastic collocation method in this situation is efficient. Collocation methods can be used to approximate the solution using $u_i \in C^k(\Gamma^n; H^2_i(D))$ finitely many function values, each of them is computed by Galerkin finite elements. Besides, u_i admits an analytic extension as assumption. Let the fully discrete numerical approximation be $y_i(\cdot, N)u_i \in P_j(\Gamma^n) \otimes H^1_i(D)$. Our aim is to give a priori estimates for the total error $e = u - y_i(\cdot, N)u_i$, where the operator $y_i(\cdot, N)$ is described by (29). We will investigate the error
\[
\|u - y_i(\cdot, N)u_i\|_{L^2} \leq \|u - y_i(\cdot, N)u_i\|_{L^2} + \|y_i(\cdot, N)u_i\|_{L^2} = I + II \quad (34)
\]
evaluated in the norm $L^2(\Gamma^n; H^2_i(D))$. This yields also control of the error in the expected value of $E[\|E[u]\|_{L^2(\cdot, N)\otimes D}] \leq E[\|E[y_i(\cdot, N)u_i]\|_{L^2(\cdot, N)\otimes D}]$. The term I controls the convergence with respect to h_i, i.e. the finite element error, which will be dictated by approximability properties of the finite element space $H^1_i(D)$, given by (21) in theorem
\[
I = \|u - y_i(\cdot, N)u_i\|_{L^2(\Gamma^n; H^2_i(D))} = \int_{\Gamma^n} \rho(y) \|u - y_i(\cdot, N)u_i\|_{L^2(\cdot, N)\otimes D}^2 \leq k \int_{\Gamma^n} \rho(y) \|u\|_{L^2(\cdot, N)\otimes D}^2 \quad (35)
\]
Thus, we will only concern ourselves with the convergence results when implementing the Smolyak approximation formula, namely, our primary concern will be to analyze the Smolyak approximation error
\[
II = \|y_i(\cdot, N)u_i\|_{L^2(\Gamma^n; H^2_i(D))}.
\]
for Gaussian versions of the Smolyak formula. In this work the technique to develop error bounds for multidimensional Smolyak approximation is based on one dimensional result. Therefore, we first address the case $N = 1$. Let us recall the best approximation error for a function $u : \Gamma^1 \to H^2_0(D)$ which admits an analytic extension in the region $\sum (\Gamma^n; r) = \{ z \in \mathbb{C}, \text{dist}(z, \Gamma^n) < r \}$ of the complex plane, for some $r > 0$, in this case, r is smaller than the distance between $\Gamma^1 \subset \mathbb{R}$ and the nearest singularity of $u(Z)$ in the complex plane. For the case $N = 1$, we quote the following results.

Lemma 7.1: Given a function $u \in C^6(\Gamma^1; H^2_0(D))$ which admits an analytic extension in the region of the complex plane $\sum (\Gamma^n; r) = \{ z \in \mathbb{C}, \text{dist}(z, \Gamma^n) < r \}$, for some $r > 0$. There holds [10]
\[
E_{n-1} = \min_{\sigma \in \Lambda} \left\| u - \int_{\Gamma^n} \rho(y) \, dy \right\|_{L^2(\cdot, N)\otimes D} \leq 2 e^{\epsilon(1-\epsilon)} \max_{z \in \mathbb{C}} \left| \frac{\rho(z)}{\rho(\Gamma^n)} \right| \quad (36)
\]
where $0 < \epsilon = -\log \left(\frac{2C + \frac{1}{4}e^{\epsilon(N) - 2\epsilon}}{\epsilon(N)^2} \right)$ and
\[
V_n = \left\{ v \in C^2(\Gamma^1; H^2_0(D)) : v(\cdot, Z) = \sum_{i=1}^m y_i(\cdot, Z) \right\} \quad (37)
\]
Setting $C = \frac{2}{e^{\epsilon(1-\epsilon)}} \max_{z \in \mathbb{C}} \left| \frac{\rho(z)}{\rho(\Gamma^n)} \right|$, we have
\[
E_{n} \leq C e^{-\epsilon N} \quad (38)
\]
In what follows we will use shorthand notions $\|E[u]\|_{L^2(\cdot, N)\otimes D}$ and $\|E[u]\|_{L^2(\cdot, N)\otimes D}$ for $\|E[\rho u]\|_{L^2(\cdot, N)\otimes D}$.

Lemma 7.2: For every function $u \in C^4(\Gamma^1; H^2_0(D))$ the interpolation error with Lagrange polynomials based on Gaussian abscissas satisfies [11].
\[
\| u - y^r(u) \|_{L^2} \leq \sqrt{\int_{\Gamma^n} \rho(y) \, dy} \inf_{v \in V_n} \| u - v \|_{L^2} \quad (39)
\]
and
\[
\| y_i(\cdot, N) u_i \|_{L^2} \leq \sqrt{\int_{\Gamma^n} \rho(y) \, dy} \hat{\sigma} e^{-\sigma^2/2} \quad (40)
\]
for all $i \in N$, with positive constants $C = \sqrt{\int_{\Gamma^n} \rho(y) \, dy} \hat{\sigma} e^{-\sigma^2/2}$ and σ depending on $\hat{\sigma}$ but not on $\hat{\sigma}$. Moreover, the Gaussian abscissas defined in Section 2 are constructed for the auxiliary density $\tilde{\rho}(y_1, y_2, \ldots, y_n) = \prod_{i=1}^N \tilde{\rho}_i(y_i)$, $\forall y = (y_1, y_2, \ldots, y_n) \in \Gamma^n$, still yielding control of the desired norm [12].
for all \(v \in C^0(\Gamma^N; H^1_0(D)) \), therefore we mainly investigate
\[
\| f^N - \varphi (v_N(u)) \|_{\ell_2^n, \ell_2^n(u)}.
\]

Lemma 7.3: For function \(u \in C^0(\Gamma; H^1_0(D)) \), satisfying the assumptions of Lemma 7.1 and Lemma 7.2. The isotropic Smolyak formula (28) based on Gaussian abscissas satisfies
\[
\| f^N - \varphi (v_N(u)) \|_{\ell_2^n, \ell_2^n(u)} \leq \frac{1}{\| \beta \|_{L_2(\Gamma^N)}} \sum_{i=0}^{\rho_d} \rho_i R(w, d)
\]
with
\[
R(w, d) = \frac{(2C)^d}{2} \sum_{i=1}^{\rho_d} e^{-\gamma e^{\rho_d}}
\]

Proof: We start providing and equivalent representation of the isotropic Smolyak formula:
\[
\varphi (v_N) = \sum_{i=1}^{\rho_d} \otimes \Lambda \Phi
\]
Defining the one-dimensional identity operator \(I^{n_1} : \Gamma_n \rightarrow \Gamma_n \) for \(n = 1, 2, \ldots, N \), the error estimate can be computed using the previous representation, namely
\[
\| f^N - \varphi (v_N(u)) \|_{\ell_2^n, \ell_2^n(u)} \leq \frac{1}{\| \beta \|_{L_2(\Gamma^N)}} \sum_{i=0}^{\rho_d} \rho_i R(w, d)
\]
where, for a general dimension
\[
R(w, d) = \sum_{i=1}^{\rho_d} \otimes \Lambda \Phi (I^{n_1} - \varphi_i)
\]

Observing the fact that the set \(\hat{X}(w,1) \) contains only the point \(i_1 = 1 + w \) s. \(A(w, d) = \sqrt{1 + w} \), the following form holds
\[
\left\{ \| f^N - \varphi (v_N(u)) \|_{\ell_2^n, \ell_2^n(u)} \right\} \leq \frac{1}{\| \beta \|_{L_2(\Gamma^N)}} \sum_{i=0}^{\rho_d} \rho_i R(w, d)
\]

Theorem 7.4: For function \(u \in C^0(\Gamma; H^1_0(D)) \) under the assumptions of Lemma 7.3, the following bound holds for term \(R(w, d), d = 1, \ldots, N \)
\[
R(w, d) = \frac{(2C)^d}{2} ((1 + w)^{d+1} \cdot e^{-\gamma e^{\rho_d}})
\]

Proof: We first quote a result: \(\sum_{i=1}^{n} \left(\frac{n}{d+1} \right) = \frac{k+1}{d+1} \) and we collocate the number of points \(N^2 = \# \hat{X}(w, d) \), as follows
\[
N^2 = \left(\frac{d + w - 1}{d - 1} \right)
\]
Obviously when \(d = 1 \), we have
\[
N^2 = 1 + w - 1 = 1
\]
suppose that the following equation holds
\[
N^2 = \left(\frac{d + w - 1}{d - 1} \right)
\]
By induction, we obtain
\[
N^2 = \sum_{i=1}^{d} N^2 = \sum_{i=1}^{d} \left(\frac{d - 1 + m - 1}{d - 1} \right) = \frac{d - 1 + m - 1}{d - 1}
\]
next, we present another useful Euler formula: Suppose \(n, n \in N \) to be sufficiently large
\[
1 + \frac{1}{2} + \cdots + \frac{1}{n} = \ln n + c, \quad c = 0.57721 \leq \cdots
\]
where \(c \) is irrational number and represents Euler constant. Since the following form holds
\[
\left(\frac{d + w}{d - 1} \right) = \left(\frac{d + w}{d} \right) \cdots \left(\frac{w}{d} \right)
\]
we obtain
\[R(w,d) = \frac{(2C)^d}{2} \sum_{x \in \mathcal{X}(w,d)} e^{-2\sigma(x)} \]
\[\leq \frac{(2C)^d}{2} \left(\frac{d + w - 1}{d - 1} \right) e^{-2\sigma(w+1)} \]
\[= \frac{(2C)^d}{2} \cdot (1 + w)^{d-1} \cdot e^{-2\sigma(w+1)}, \]

Therefore, we get the estimate as follows,
\[\sum_{x \in \mathcal{X}} R(w,d) \leq \frac{1}{2} \sum_{x \in \mathcal{X}} (2C)^d \cdot (1 + w)^{d-1} \cdot e^{-2\sigma(w+1)} \]
\[\leq \frac{1}{2} e^{-2\sigma(w+1)} \sum_{x \in \mathcal{X}} (2C)^d \cdot (1 + w)^{d-1} \]
\[\leq \frac{1}{2} e^{-2\sigma(w+1)} \cdot (1 + w)^{d-1} \sum_{x \in \mathcal{X}} (2C)^d \]
\[= \frac{1}{2} \frac{2C(1-(2C)^{d})}{1-2C} (1 + w)^{d-1} \cdot e^{-2\sigma(w+1)}. \]

This finishes the proof.

References