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Introduction
One of the biggest applications of mathematics is in the field of 

astrophysics, which is the study of the mechanical motion and behavior 
of celestial bodies [1]. Using math, we can describe any celestial 
phenomena using numerical quantities which represent certain 
physical characteristics [2-5]. 

In this theoretical paper, mathematically describe the orbits 
of natural satellites and planets, and use this to calculate certain 
characteristics of the orbits of the planets within our solar system [6-
9]. Once done this using mathematical method, calculated values to 
literature values already determined. The properties of a planetary orbit 
plan on investigating are:

1.	 The Cartesian form of an elliptical orbit

2.	 The Parametric form of an elliptical orbit

3.	 The Polar form of an elliptical orbit

4.	 The length of the orbit using various forms

5.	 The area covered by the ellipse of the planetary orbit

6.	 The volume carved out by a planet as it makes one full revolution 
around the sun.

At first glance, the motion of planetary bodies may seem complex 
and hard to understand [10]. However, believe Math is a black and white 
subject that simplifies certain situations to numbers and equations. 
In this report, it attempt to simplify planetary revolutions through 
mathematical concepts.

Before proceeding with this investigation, it is important to 
introduce and layout the basic variables and quantities that will be used 
in this exploration [6]. These quantities are included in the diagram 
below:

•	 a: This represents the semi-major axis, which is the largest 
distance between the center of the ellipse and the curve of the 
orbit.

•	 b: This represents the semi-minor axis, which is the shortest 
distance between the center of the ellipse and the curve of the orbit.

•	 c: This is the distance between the center of the orbit and 
the focus of the orbit, which is where the Sun would be in a 
planetary orbit.

e: Although not included in the diagram, this quantity is known as 
eccentricity, which is the measure of the deviation of the shape of an 
orbit from that of a perfect circle (a measure of how elliptical an orbit 
is). The higher the eccentricity of an orbit, the more elliptical it is. It 
can be calculated using the simple formula: 

ce
a

=  (for an orbit into 
parametric 1).

After some research from wolframalpha.com and 
windows2universe.org, Tabulated these values for each planet. All 
values are given in astronomical units.

Cartesian Form of an Orbit
Given the fact that any planetary orbit is an ellipse, the Cartesian 

form will follow the basic form of an elliptical curve: 

( ) ( )2 2

2 21
x h y k

a b
− −

= +

Where h is the horizontal displacement of the curve, k is the vertical 
displacement of the curve a is the radius of the curve in the x direction, 
and b is the radius of the curve in the y direction.

Generally, in a planet’s orbital curve, there is no displacement in the 
y direction; the focus only shifts away from the origin in the x direction. 
Therefore, the value of k in the above equation for a planetary orbit 
becomes 0. 

Now, we need to plug in the variables introduced in the previous 
section. Since c is the distance between the focus, which represents 
the origin O, and the center of the curve, this can be denoted as the 
horizontal displacement of the curve, so we can replace h with c. 
The variable a represents the semi-major axis, or the radius in the x 
direction, and will take the position of the variable a in the general 
form. The variable b represents the semi-minor axis, or the radius in the 
y direction, and will replace the variable b in the general form equation. 
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With the given replacements and adjustments, we get the general 
Cartesian form for the elliptical orbit of a planetary body:

( ) ( )2 2

2 21
x c y

a b
−

= +

Parametric Form of an Orbit
The parametric form of an equation expresses both variables in a 

function, x and y, in terms of another distinct variable. In this paper, 
we will refer to this variable as t (not to be confused with the variable 
for time).

We can convert our Cartesian equation for an orbit into parametric 
form in a few simple steps:

( ) ( )2 2 2 2

2 21
x c y x c y

a b a b
− −   = + = +   

   

( )22 (sin ) cos 1t t+ =

sin x ct
a
−

=

sina t c x+ =

and

cos yt
b

=

cosb t y= .

Polar Form
Polar form equations are in terms of r, the distance from the origin, 

and θ, the angle between the line that connects a point on the curve and 
the origin and the positive x-axis.

It attempted to directly convert the Cartesian equation to the 
polar equivalent, but was quite unsuccessful. It decided to manipulate 
some key characteristics of an ellipse to derive the polar form. The two 
characteristics of an ellipse to keep in mind are as follows:

1.	 In an ellipse, with two foci (equidistant from the center/origin), 
the sum of the lines F1P and F2P are always equal to 2a, where P 
is any point on the ellipse (Figures 1 and 2). 

2.	 If the first diagram is altered slightly, so that point P is on the 
semi-minor axis, both F1P and F2P are equal in length at a, and 2 
right angle triangles are formed between the center/origin, both 

foci and point P. Using Pythagoras theorem, we can deduce that 
b2=a2-c2 (Figure 3).

Now, if we were to set F1 as the origin and let F2 some point on the 
positive x-axis denoted by (2c, 0), we get the in Figure 4.

We take w to be a vector connecting O and P. The vector connecting 
F2 and P is represented by w–2ci (the i is added to give direction to the 
magnitude 2c). The sum of the magnitude of both vectors is equal to 2a, 
according to the first statement made above:

2 2a+ − =w w ci

Since the magnitude of w is equal to r (recall that r is the distance 
between the origin and the curve), we get:

2 2r a+ − =w ci

Now we need to split the w–2ci vector into x and y components. We 
can denote the magnitude of the y component simply as y, but for the x 
component, we need to take into account 2ci, as this is in the x direction 
(Table 1). Therefore, the magnitude of the x component is x–2c:

( )2 2r x c i yj a+ − + =

The magnitude of the second vector is nothing but the square 
root of the sum of the squares of the x magnitude and y magnitude:

( )2 22x c y− + . 

Remember that in polar equations, x=γ cos θ and y=γ sin θ. 
Plugging these into the original equation gives:Figure 1: Elliptical calculated using the simple formula: ce

a
= .

Figure 2: The sum of the lines F1P and F2P is equal to equal to 2a.

Figure 3: Point P is on the semi-minor axis, both F1P and F2P are equal to a.
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Using Desmos Online Graphing Calculator, it graphed the equations 
for the orbits of all 8 planets to get a two dimensional aerial view of the 
planetary orbits. The origin is the location of the Sun (Figures 5 and 6):

Length of the Curve of an Orbit
Now that we have the equations of the curve, we can calculate 

the length of this curve, which represents the length of each planet’s 
revolution. But first, let us derive the formula for length of a curve. If 
we have a graph of a function f(x), then the distance between any two 
distinct points on the curve is given by the following formula:

( ) ( )2 2cos 2 sin 2r r c r aθ θ+ − + =

We can rearrange this to get:

( ) ( )2 2cos 2 sin 2r r c r aθ θ+ − + =

( ) ( )2 2cos 2 sin 2r c r r aθ θ− − + = −

(rcosθ-2c)2+(rsinθ)2=(r-2a)2

r2-4ar+4a2=r2(cosθ)2-4crcosθ+4c2+r2(sinθ)2

r2-4ar+4a2=r2((cosθ)2+(sinθ)2)-4cr cosθ+4c2

(cosθ)2+(sinθ)2=1

r2-4ar+4a2=r2-4cr cosθ+4c2

-4ar+4a2+4a2=-4cr cosθ+4c2

-ar+a2=-crcosθ+c2

-ar+cr cosθ=c2-a2

r(c cosθ-a)=c2-a2

2 2

cos
c ar

c aθ
−

=
−

From the second property discussed above (b2=a2-c2), we can 
further simplify to get the polar form of the curve:

2

cos
br

a c θ
=

−
We can plug in the values of a, b, and c from the above table of 

values for each planet and get the Cartesian, Parametric and Polar 
equations of their orbits (Table 2).

Figure 4: Set F1 as the origin on the positive x-axis denoted by (2c,0).

Planetary Data
Planet Name a/AU b/AU c/AU e/AU

Mercury 0.3870 0.3788 0.0796 0.2056
Venus 0.7219 0.7219 0.0049 0.0068
Earth 1.0027 1.0025 0.0167 0.0167
Mars 1.5241 1.5173 0.1424 0.0934

Jupiter 5.2073 5.2010 0.2520 0.0484
Saturn 9.5590 9.5231 0.5181 0.0542
Uranus 19.1848 19.1645 0.9055 0.0472

Neptune 30.0806 30.0788 0.2587 0.0086

Table 1: Astronomical units.

Note: The unit of the axes of the above graphs are Astronomical Units (AU) 

Figure 5: (From outer to inner): Neptune, Uranus, Saturn, and Jupiter 
Zooming in gives a clearer picture of the inner planet orbits.

Note: The unit of the axes of the above graphs are Astronomical Units (AU) 
Figure 6: (From outer to inner): Mars, Earth, Venus, and Mercury.
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( ) ( )2 2
2 1 2 1x x y y− + −

2 2x y= ∆ + ∆

If we were to bring these two points infinitely close to each other 
along the curve, the segment on the curve would be very close to a 
straight line, andΔx→0 and Δy→0. Due to this change, the above 
equation becomes:

( ) ( )2 2dx dy+

2 2dx dydx
dx dx

   = +   
   

2

1 dydx
dx

 = +  
 

If we set the limits [i, j] and integrate the function, we get the sum 
of the lengths of all the infinitesimally small lines which constitute the 
curve f(x):

2

1
j

i

dy dx
dx

 +  
 ∫

This is the equation for the length of a curve in Cartesian form.

For parametric form, we go back to ( ) ( )2 2 dx dy+  and multiply and 
divide by dt to get:

2 2dx dydt
dt dt

   +   
   

Integrating this within some limit [k, l] will again give us the sum 
of the lengths of all the infinitesimally small lines which make up the 
curve f(x):

2 2l

k

dx dy dt
dt dt

   +   
   ∫

For Polar form, it’s slightly trickier. We need to convert the polar 
function into a parametric function and then use the above equation for 
parametric equations. First, we need to separate x and y:

x=rcosθ

y=rsinθ.

Next we differentiate using the product rule:

cos sindx dr r
d d

θ θ
θ θ
= −

2 2

cos sindx dr r
d d

θ θ
θ θ

   = −   
   

sin cosdy dr r
d d

θ θ
θ θ
= +

2
2( sin cos )dy dr r

d d
θ θ

θ θ
  = + 
 

.

Now that we have differentiated in parametric form, we can 
use the parametric formula for length of a curve by first simplifying

2 2

 dx dy
d dθ θ

   +   
   

:

( )

( ) ( ) ( )

2 2 2
2 2

2
2 2 22

cos 2 sin cos

sin sin 2 sin cos cos

dx dy dr drr r
d d d d

dr drr r
d d

θ θ θ
θ θ θ θ

θ θ θ θ θ
θ θ

     + = − +     
     

 + + + 
 

( ) ( ) ( ) ( )
2 2

2 2 2 22 2cos sin sin cosdr drr r
d d

θ θ θ θ
θ θ

   = + + +   
   

( ) ( )( ) ( ) ( )( )
2

2 2 2 22cos sin cos sindr r
d

θ θ θ θ
θ

 = + + + 
 

( ) ( )2 2cos sin 1θ θ∴ + =

Planet Name Cartesian Equation Parametric Equation Polar Equation
Mercury ( ) ( )2 2

2 2

0.0796
1

0.3870 0.3788
x y−

= +
0.3870 sin t+0.0796=x

0.3788 cost t=y
20.3788

0.3870 0.0796cos
r

θ
=

−

Venus ( ) ( )2 2

2 2

0.0049
1

0.7219 0.7219
x y−

= +
0.7219 sin t+0.0049=x

0.7219 cost t=y
20.7219

0.7219 0.0049cos
r

θ
=

−

Earth ( ) ( )2 2

2 2

0.0167
1

1.0027 1.0025
x y−

= +
1.0027 sin t+0.0167=x

1.0025 cost t=y
21.0025

1.0027 0.0167cos
r

θ
=

−

Mars ( ) ( )2 2

2 2

0.1424
1

1.5241 1.5173
x y−

= +
1.5241 sin t+0.1424=x

1.5173 cost t=y
21.5173

1.5241 0.1424cos
r

θ
=

−

Jupiter ( ) ( )2 2

2 2

0.2520
1

5.2073 5.2010
x y−

= +
5.2073 sin t+0.2520=x

5.2010 cost t=y
25.2010

5.2073 0.2520cos
r

θ
=

−

Saturn ( ) ( )2 2

2 2

0.5181
9.5590 9.5231

x y
= +

9.5590 sin t+0.5181=x
9.5231 cos t=y

29.5231
9.5590 0.5181cos

r
θ

=
−

Uranus ( ) ( )2 2

2 2

0.9055
1

19.1848 19.1645
x y−

= +
19.1848 sin t+0.9055=x

19.1645 cos t=y
219.1645

19.1848 0.9055cos
r

θ
=

−

Neptune ( ) ( )2 2

2 2

0.2587
1

30.0806 30.0788
x y−

= +
30.0806 sin t +0.2587=x

30.0788 cos t=y
230.0788

30.0806 0.2587cos
r

θ
=

−

Table 2: Values for each planet on Cartesian, Parametric and Polar equations of their orbits.
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2
2dr r

dθ
 = + 
 

.

Plugging this into the parametric equation formula, we get the 
general formula for the length of a polar curve:

2
2

b

a

dr r d
d

θ
θ

  + 
 ∫ .

With these three formulas, we can give the general equation for the 
length of a planetary elliptical orbit. Using Cartesian form:

2

1
j

i

dy dx
dx

 +  
 ∫ .

To get dy
dx

, we implicitly differentiate our general Cartesian equation 

for a planetary orbit:

( )

( ) ( )
2 2

22

2 2

2 20 *

2
*

2

x c y dy
a b dx

x c b x cdy b
dx a y a y

−
= +

− − − −
= =

.

Plugging this into the length of a curve formula gives us:

( ) ( )
2 22 4

2 4 21 1
j j

i i

b x c b x c
dx dx

a y a y
 − − −

+ = +  
 

∫ ∫ .

In order to substitute for y2, we need to find y2 in terms of x:

( ) ( )2 2

2 21
x c y

a b
−

= +

( ) ( )2 22
2 2 2

2 21
x c b x c

y b b
a a

 − −
 = − = −
 
 

.

Then, we need to simplify the denominator of 
2dy

dx
 
 
 

:

( ) ( )( )2 24 2 4 2 2 2 2 2 2a y a b a b x c a b a x c= − − = − − .

Plugging this into the original equation, simplifying and setting the 
limits to [c-a,c+a] (to account for the horizontal displacement of the 
graph by c units), gives us:

( )
( )( )

22

22 2
1

c a

c a

b x c
dx

a a x c

+

−

−
+

− −
∫ .

Taking the limits [0, 2π] (since the period of both x and y are 2π, 
taking these limits will mean we get the length of the full curve since x 
and y go back to their original position), we can also find the length of 
the curve using the parametric form of the equation. First we need to 

find dx
dt

 and dy
dt

.

x=asin t+c

cosdx a t
dt

=

y=bcos t 

sindy b t
dt

= − .

Plugging this into the formula for length of a parametric curve, we get:

( ) ( )
2

2 2

0

cos sina t b t dt
π

+ −∫
Since we already have the general equation of r for a planetary 

orbit, we can also get the length of a planetary orbit if the equation is 
expressed in polar form:

2
2dr r

dθ
 = + 
 

22 2

cos
dr b
d a cθ θ

  = +    −   

In order to further simplify, you need to differentiate r with respect 
to θ using the quotient rule:

( )( )
( )

2

2

cos 0 sin
cos

a c b cdr
d a c

θ θ
θ θ

− −
=

−

( )

2

2

sin
cos

dr b c
d a c

θ
θ θ

−
=

−

Plugging this in, we get:

( )

2 22 2 2
2

2

sin
coscos

dr b c br
d a ca c

θ
θ θθ

   −   + = +      −  −   
We can input this simplification into our length of a polar curve 

formula. Integrating with the limits [0, 2π], we get:

( )

2 22 2 2

2
0

sin
coscos

b c b d
a ca c

π θ θ
θθ

   −  +    −−   
∫

We can also calculate the volume covered by a planet in a single 
orbit by multiplying the area of a circle with the same radius as the 
planet into the length formulas derived above, similar to how a prism’s 
volume is calculated by multiplying the cross sectional area and the 
length of the solid. Using this formula gives the volume as either:

( )
( )( )

22
2

22 2
1

c a

c a

b x c
r dx

a a x c
π

+

−

−
+

− −
∫

For the Cartesian form equation or:

( ) ( )
2

2 22

0

cos sinr a t b t dt
π

π + −∫
For the Parametric form equation and:

( )

2 22 2 2
2

2
0

sin
coscos

b c br d
a ca c

π θπ θ
θθ

   −  +    −−   
∫

For the Polar form equation, where r is the radius of the planet.

Mercury’s Orbit
To see whether my derivations were accurate, it plugged in already 

calculated values for the constants a, b, and c and compared the result 
with already calculated values found on reliable sources on the internet. 

My first test was on the orbit of the planet Mercury, the first 
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planet in the solar system which happens to have the largest value of 
e, eccentricity. 

After in depth research I found that the approximated, widely 
accepted values for a, b are as follows:

•	 a: 0.3870 astronomical units (a unit of distance used in 
astronomy which is equal to the average distance between the 
Earth and Sun) or 5.8 × 107 km

•	 b: 0.3788 astronomical units or 5.7 × 107 km.

We can calculate the total distance covered by a planet in a single 
revolution based off of the length of a curve formula given above. We 
can choose to use either the Cartesian or the parametric form. Since 
the parametric form is slightly simpler to handle, let’s use that equation. 
Plugging in the above values gives us:

( ) ( )
2

2 2

0

0.3870cos 0.3788sint t dt
π

+ −∫
Evaluating in a calculator gives a value of 2.4316 astronomical units. 

According to wolframalpha.com, the literature value of this distance is 
2.4065, giving a reasonably low error percentage of 1.04%. I decided to 
tabulate my calculated values versus the literature values from the site 
for the rest of the planets (Table 3).

My average error percentage is 0.29%. From this, I can conclude 
that my calculations and derivations are reasonably accurate.

Area Covered by the Elliptical Orbit of a Planet
If we visualize the elliptical orbit as a graph on a Cartesian plane, we 

can calculate the area covered by the curve, or in the words, the planet, 
in one complete revolution. To derive this expression, integrated the 
general equation of the curve and then added the limits [c-a,c+a]. First 
I made y the subject of the equation:

( ) ( )2 2

2 21
x c y

a b
−

= +

( )2 2
2

21 1
x c x cy b b

a a

 − −  = − = −      

Upon integration
2

1 x cb dx
a
− −  

 ∫
We can use u-substitution to simplify the situation

sin sinx c x a c
a

θ θ−
= → = +

cos cosdx a dx a d
d

θ θ θ
θ
= → =

Substituting gives us

( )

( )

2 2

2

2

1 (sin ) cos 1 (sin ) cos

cos

2 cos 1 cos2

b a d ab d

ab d

θ θ θ θ θ θ

θ θ

θ θ

− = −

=

∴ − =

∫ ∫
∫

( )2 cos2 1cos
2
θθ +

=

( )cos2 1
2

ab dθ θ= +∫
sin 2

2 2
ab Cθ θ = + + 

 

sinx c
a

θ−
∴ =

1sin x c
a

θ − − =  
 

Substituting for θ gives

1

1

sin 2sin
sin

2 2

x c
aab x c C

a

−

−

  − 
    −    + +   
 
 

After applying limits on the interval [ ], c a c a− + , we can get the 
total area of the curve:

( )( ) ( ) ( ) ( )
1 1

1 1
sin 2sin 1 sin(2sin 1 )

sin 1 sin 1
2 2 2

ab − −
− −

 −
 + − − −
 
 

sin 2 sin 2
2 2

2 2 2 2 2
ab

π π
π π

    × ×    
    + − +

 
 
 

sin 2
2

2

π × 
   and sin 2

2
2

π × 
 −

 both cancel out to give:

2
abπ

=

Since this is the area under the hemisphere of the curve above the 
x-axis, we need to multiply by 2 to get the area of the full ellipse:

Planetary Orbit Lengths
Planet Name a/AU b/AU Calculated Value/AU Literature Value/AU Error Percentage

Mercury 0.3870 0.3788 2.4316 2.4065 1.04%
Venus 0.7219 0.7219 4.5358 4.5452 0.21%
Earth 1.0027 1.0025 6.3001 6.2826 0.28%
Mars 1.5241 1.5173 9.5762 9.5529 0.24%

Jupiter 5.2073 5.2010 32.7184 32.6714 0.14%
Saturn 9.5590 9.5231 60.0610 59.8779 0.31%
Uranus 19.1848 19.1645 120.5417 120.4874 0.05%

Neptune 30.0806 30.0788 189.0020 188.9070 0.05%

Table 3: Calculated values versus the literature values from the site for the rest of the planets.
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abπ

As expected, the above formula is the formula for the area of any 
ellipse, where a is the maximum radius and b is the minimum radius 
(Table 4). 

Conclusion
This proof has become monumental for its ingenuity and its 

immense intellectual motion of Kepler concept. Therefore, the author 
considered it worthwhile to attempt to reach Mathcad conclusion via 
an alternate route, so that the beauty of the journey along this path be 
exposed to its full extent. Subsequently, based on the law of universal 
gravitation and his other great discovery, the concept of astrophysics, 
one-dimensional motion proved theoretically that planets do indeed 
prescribe elliptic trajectories around the sun. The position and velocity 
vectors at a particular instant of time discovered generating an 

Planet Name a/AU b/AU Area/AU^2
Mercury 0.3870 0.3788 0.4605
Venus 0.7219 0.7219 1.6372
Earth 1.0027 1.0025 3.1579
Mars 1.5241 1.5173 7.2650

Jupiter 5.2073 5.2010 85.0842
Saturn 9.5590 9.5231 285.9831
Uranus 19.1848 19.1645 1155.0593

Neptune 30.0806 30.0788 2842.4740

Table 4: Values for all the 8 planets.

ephemeris (right ascension and declination as a function of time) from 
the orbital elements in the real Two-dimensional situation. 
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