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Abstract
We investigate properties of a Type-A meander, here considered to be a certain planar graph associated to 

seaweed subalgebra of the special linear Lie algebra. Meanders are designed in such a way that the index of the 
seaweed may be computed by counting the number and type of connected components of the meander. Specifically, 
the simplicial homotopy types of Type-A meanders are determined in the cases where there exist linear greatest 
common divisor index formulas for the associate seaweed. For Type-A seaweeds, the homotopy type of the algebra, 
defined as the homotopy type of its associated meander, is recognized as a conjugation invariant which is more 
granular than the Lie algebra's index.

Keywords: Lie algebra; Seaweed; Biparabolic; Meander; Rank; Index; 
Frobenius

Introduction
The index of a Lie algebra is an important invariant of the Lie 

algebra and is bounded by the algebra's rank: ind g≤rk g, with equality 
when g is reductive. More formally, the index of a Lie algebra g is given by

( )( )
*

ind min dim ker
∈

=
g

g ff
B ,

where f is a linear functional on g and Bf is the associated skew-symmetric 
Kirillov form defined by Bf (x, y) = f([x, y]) for all x, y ∈ g. Of particular 
interest are those Lie algebras which have index zero. Such algebras are 
called Frobenius and have been studied extensively from the point of 
view of invariant theory [1] and are of special interest in deformation 
and quantum group theory stemming from their connection with the 
classical Yang-Baxter equation [2, 3]. Simple Lie algebras can never be 
Frobenius but there always exits subalgebras that must be.

In [4] Dergachev and A. Kirillov introduced a combinatorial 
method for computing the index of certain seaweed (biparabolic) 
subalgebras of An−1 = sl(n), based on counting the number and type of 
connected components of a planar graph representation of the seaweed 
algebra, called a (Type-A) meander. A Type-C, or symplectic meander 
and an attendant combinatorial index formula was developed by Coll et 
al in [2] for seaweed subalgebras of sp(n). (See also [5]).

Using a collection of deterministic graph theoretic moves, a given 
meander can be “wound down" to reveal its (simplicial) homotopy type. 
The sequence of moves used in this winding-down procedure is called 
the signature of the meander and may be regarding as a graph theoretic 
rendering of Panyushev's well-known reduction [6]. In [7,8], Coll et al 
used the signature to develop closed form formulas for the index of a 
seaweed algebra in terms of the block sizes of the defining flags in the 
Type-A and Type-C cases when the number of blocks in the flags is 
small. Subsequently, Karnauhova and Liebsher [10] used signature type 
moves and complexity arguments to establish that the index formulas 
developed in these papers are the only linear greatest common divisor 
formulas for the index based on the flags defining the seaweed. One 
finds that in the Type-A case, a seaweed is Frobenius precisely when 
its associated meander consists of a single path [4, 7, 8]. For a Type-C 
seaweed to be Frobenius, its associated meander must reduce to a 
certain collection of paths [5, 10].

Since the homotopy type is not defined in terms of the algebraic 
structure of the original Lie algebra, it is not a priori clear that it is an 

algebraic invariant of the original algebra.  In fact, this remains an open 
question for an arbitrary seaweed. However, it is implicit in the work 
of Moreau and Yakimova [11] that for Type-A seaweeds the homotopy 
type is a conjugation invariant which is more granular than the index. 
The example at the end of this paper provides two seaweed algebras 
which have the same dimension, rank, and index − but different 
homotopy types. So, are not conjugate.

In Theorems 5.1 and 5.2, we classify those homotopy types of 
seaweeds where there exist linear greatest common divisor index 
formulas developed in the prequels to this article.

Seaweed Algebras 
Let q and q′ be two parabolic subalgebras of a reductive Lie algebra 

g. If q + q′ = g then q∩q′ is called a seaweed, or in the terminology
of A. Joseph [13] biparabolic, subalgebra of g. In what follows, we
further assume that g is simple and comes equipped with a triangular
decomposition

g = u+⊕h⊕u−

where h is a Cartan subalgebra of g and u+ and u− are the subalgebras 
consisting of the upper and lower triangular matrices, respectively. Let 
Π be the set of g's simple roots and for β∈Π, let gβ denote the root 
space corresponding to β. A seaweed subalgebra q∩q′ is called standard 
if q⊇h⊕u+ and q′⊇h⊕u

-
. We tacitly assume that the ground field is an 

algebraically closed field of characteristic zero, so that any seaweed is 
conjugate to a standard one. Note that while two standard parabolic 
subalgebras cannot be conjugate, two standard seaweeds can be.

In the case that q∩q is standard, let Ψ = {∈Π : g−β  ∉ q}, Ψ′ = 
{β∈Π: gβ∉ q′}, and denote the seaweed by p(Ψ|Ψ′). Such a seaweed 
is parabolic if one of Ψ or Ψ′ or is the empty set, and called maximal 
parabolic if it is of the form p({β}|) or p(|{β}), respectively.
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Type-A Seaweeds 

Let An−1 = sl(n) be the algebra of n×n matrices with trace zero and 
consider the triangular decomposition of sl(n) as above. Let = {β1,…, 
βn−1} be the set of simple roots of sl(n) with the standard ordering and 
let ( )A | ′Ψ Ψpn denote a seaweed subalgebra of sl(n) where Ψ and Ψ′ 
are subsets of Π. Let compn denote the set of sequences of positive 
integers whose sum is n (i.e., compn is the set of compositions of n). 
It will be convenient to index seaweeds of sl(n)  by pairs of elements 
of compn. Let (X) denote the power set of a set X. Let jA be the 
usual bijection from compn to a set of cardinality n −1. That is, given 

( )1 2, , ..., comp= ∈m na a a a , define jA: compn  → (Π) by

( ) { }1 1 2 1 2 1
, , ...,

−+ + + +=
 ma a a a a aaAj β β β .

Now, following the notational conventions established in [3], define 

the type of the seaweed ( ) ( )( )Apn a bA Aj |j  to be the symbol

1 2

1 2





m

t

a a a

b b b
, where

1 1= =

= =∑ ∑
m t

i j
i j

a b n .

By construction, the sequence of numbers in a  determines the 
heights of triangles below the main diagonal in ( ) ( )( )Apn a bA Aj |j , which 
may have nonzero entries, and the sequence of numbers in b determines 
the heights of triangles above the main diagonal. For example, the 

seaweed { } { }( )A
20 17 10 14| ,β β βp of type 17 3

10 4 6
 has the following shape, 

where * indicates the possible nonzero entries from the ground field. 
See Figure 1, where we have chosen such a large example to fully 
illustrate the winding-down moves of Section 4, but also to provide a 
seaweed with an interesting homotopy type.

graph to each seaweed of type 1 2

1 2





m

t

a a a

b b b
 as follows. Line up n 

vertices horizontally and label them v1, v2,…, vn. Partition the set of 
vertices into two set partitions, called top and bottom. The top partition 
groups together the first a1 vertices, then the next a2 vertices, and so on, 
lastly grouping together the last am vertices. In a similar way, the bottom 
partition is determined by the sequence b1,…,bt. We call each set within 
a set partition a block. For each block in the top (likewise bottom) 
partition we build up the graph by adding edges in the same way. First, 
add an edge from the first vertex of a block to the last vertex of the same 
block drawn concave down (respectively concave up in the bottom part 
case). The edge addition is then repeated between the second vertex 
and the second to last and so on within each block of both partitions. 
More explicitly, given vertices vj , vk in a top block of size ai, there is an 
edge between them if and only if j + k = 2(a1 + a2 +…+ ai−1) + ai + 1. If 
vj , vk are in a bottom block of size bi, there is an edge between them if 
and only if j + k = 2(b1 + b2 +…+ bi−1) + bi + 1. The resulting undirected 
planar graph is called the meander associated to the given seaweed. We 
say that the meander has the same type as its associated seaweed See Figure 2.

Type-A Index Formulas 

Evidently, every meander consists of a disjoint union of cycles, 
paths, and points (degenerate paths). The main result of [5] is that the 
index of the meander can be computed by counting the number and 
type of each of these components.

Theorem 3.1 (Theorem 5.1, [5]): If p is a seaweed subalgebra of 
sl(n), then

ind p = 2C + P −1,

where C is the number of cycles and P is the number of paths in the 
associated meander.

This elegant result, and the Type-C analogue ([Theorem 4.5) are 
difficult to apply in practice. However, in certain cases, the following 
index formulas allow us to ascertain the index directly from the block 
sizes of the flags that define the seaweed. The following formulas were 
developed in the first two articles in this series. We hasten to add that 
the formula in Theorem 3.2, which follows as a corollary to Theorem 
3.3, was known early on to Elashvilli [14].

Theorem 3.2 (Theorem 7, [3]): A seaweed of type 
a b

n
 has index 

gcd(a; b)−1

Theorem 3.3 (Theorem 8, [3]): A seaweed of type 
a b c

n
, or type 

−
a b

c n c
, has index gcd(a + b; b + c) − 1. 

The following result establishes that the formulas in Theorems 3.2 
and 3.3 the only nontrivial linear ones that are available in the parabolic 
case.

Theorem 3.4 (Theorem 5.3, [11]): If m ≥ 4 and p is a seaweed of 

* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *

* * *
* * *
* * *

17

3

10

4

6

Figure 1: A seaweed of type 
17 3

10 4 6 .

Figure 2: A meander of type 
17 3

10 4 6
.

Meanders, Index Formulas, and Homotopy Type
Type-A meanders 

Following Dergechev and A. Kirillov [5], we associate a planar 
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type 1 2  ma a a

n
, then there do not exist homogeneous polynomials f1, 

f2 ∈ [x1,…, xm] of arbitrary degree, such that the index of p is given by 

gcd(f1(a1,…, am), f2(a1,…, am)).

Homotopy type 

Definition 3.5: We say that a planar graph has homotopy type H(a1, 
a2,…,am) if its homotopy type is equivalent to the meander of type 

1 2

1 2





m

m

a a a

a a a
. That is, a union of m non-concentric subgraphs, where 

each subgraph has homotopy type 
2
ia

concentric circles if ai is even, 
and  ai/2  concentric circles with a point in the center if ai is odd.

Example: A planar graph with homotopy type H(5, 1, 2) is 
homotopically equivalent to the graph in the following Figure 3.

When it makes sense, we define the homotopy type of a seaweed to 
be the homotopy type of its corresponding meander. More pointedly, 
we note that, unlike the index, the homotopy type of a Lie algebra g 
is not defined directly in terms of g's Lie Theory. It is therefore not a 
priori clear to what extent the homotopy type is an algebraic invariant. 
However, the following theorem follows from Theorem 5.3 in the recent 
paper by Moreau and Yakimova [11].

Theorem 3.6: Conjugate seaweed subalgebras of sl(n) have the 
same homotopy type. 

Winding Down and the Signature 
In this section, we recall two technical Lemmas See [8,9]. The first 

Lemma (Winding Down) can be used to discern the homotopy type of 
a meander. The second Lemma (Winding Up), in cooperation with the 
Winding-Down Lemma, will be used in the proof of the classification 
Theorems 5.1 and 5.2. In these theorems, we classify the homotopy 
types in the cases where there exist linear greatest common divisor 
index formulas for the associated seaweed.

The Winding-Down Lemma establishes that, through a 
deterministic sequence of graph theoretic moves, each meander can 
be contracted or “wound down” to reveal its homotopy type. Since the 
sequence of moves is uniquely determined by the meander, we refer to 
this sequence as the meander's signature. Essentially, the winding-down 
moves, and the attendant signature, are a graph-theoretic recasting of 
Panyushev's reduction algorithm which was used in [14] to develop 
inductive formulas for the index of seaweeds in gl(n). 

Lemma 4.1 (Winding Down): Given a meander M of type 
1 2

1 2





m

t

a a a

b b b
, create a meander M′ by one of the following moves. For 

all moves except the Component Elimination, M and M′  have the same 
homotopy type.

1. Flip (F): If a1 < b1, then M M′ of type 1 2

1 2





t

m

b b b

a a a

2. Component Elimination (C(c)): If a1 = b1 = c, then M  M′ of 

type 2 3

2 3





m

t

a a a

b b b
.

3. Rotation Contraction (R): If b1 < a1 < 2b1, then M M′ of type 

( )
1 1 2

1 1 22 −




m

t

b a a a

b a b b
.

4. Block Elimination (B): If a1 = 2b1, then M M′ of type  1 2

2 3

..


m

t

b a a

b b b
.

5. Pure Contraction (P): If a1 > 2b1, then M M′ of type 

( )1 1 1 1 2

2 3

2− 



m

t

a b b a a a

b b b
.

Example: We continue with our running example, and wind down 
the meander of Figure 2 in Figure 4 below.  

Note that each of the winding-down moves can be reversed to yield 
a winding-up move. The winding-up moves, which we record in the 
following Lemma, can be used to build up any meander, of any size and 
block configuration.

Lemma 4.2 (Winding Up): Every meander is the result of a 
sequence of the following moves applied to the empty meander. For 
all moves, except Component Creation, M and M′  have the same 
homotopy type.

Given a meander M of type 1 2

1 2





m

t

a a a

b b b
, create a meander M′ by 

one of the following moves: 

Figure 3: A planar graph with homotopy type H(5; 1; 2) .

17 | 3
10 | 4| 6

R


10 | 3
3| 4| 6

P


4| 3| 3
4| 6

C (4)


3|3
6

F


6
3| 3

B


3
3

C (3)


�

�

Figure 4: Winding down the meander 
17 3

10 4 6
, with signature RPC(4)FBC(3) .
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1. Flip ( )F : M  M′ of type 1 2

1 2





t

m

b b b

a a a
.

2. Component Creation ( )( )C c : If a1 = b1 = c, then M  M′ of type
1 2

1 2





m

t

c a a a

c b b b
.

3. Rotation Expansion ( )R : If b1 < a1 < 2b1, then M  M′ of type

( )1 1 2

1 2

2 − 



m

t

a b a a

a b b
.

4. Block Creation ( )B : M  M′ of type 1 2

1 1 2

2 



m

t

a a a

a b b b
.

5. Pure Expansion ( )P : M  M′ of type 1 2 3 4

2 1 2

2+ 



m

t

a a a a a

a b b b
.

Classification Theorems 
In this section, we present the promised homotopy type 

classification theorems. The proofs are inductive in nature and based 
on the Winding-Up lemma.

Theorem 5.1. If p is a seaweed subalgebra of sl(n) of type 
a b

n
or 2a

a a
, with gcd(a,b) = k, then its homotopy type is H(k).

Proof. Given any integer m≥2, we prove by induction that the 
theorem holds for all such seaweeds created using m winding-up 
moves. For the base of induction, the only seaweeds of this type that 
can be created by two moves are those created by Component Creation 

followed by Block Creation. Such a meander has type 2a
a a

. The 
homotopy type is H(a), and gcd(a,a) = a.

Now, let m > 2 and assume the theorem holds for all such seaweeds 

created using m−1 winding-up moves. Let p be a seaweed of type a b

n
 

or a b

n
 created by m-1 winding-up moves. Also let k = gcd(a, b). Let p′ 

be the seaweed obtained from p by applying the appropriate winding-
down move, so that p′ is created using m-1 winding-up moves. We 
break the proof into cases depending on which winding-down move is 
applied. For all cases except Component Elimination, p and p′ have the 
same homotopy type.

Case 1: A Flip is applied to p.

This case is trivial.

Case 2: A Component Elimination is applied to p.

This case is vacuously true − a Component Elimination cannot be 

applied to a seaweed of type a b

n
or 

n
a b

.

Case 3: A Rotation Contraction is applied to p.

In order to apply this move, p must have type 
n

a b
 with n < 2a, thus 

p′ has type 
2 -

a
a n |b

. For any positive integers x and y we have gcd(x, y) 

= gcd(x , x + y). Therefore,

gcd(b, 2a−n) = gcd(b, b + 2a −n) = gcd(b, a) = k .

The claim then follows from the inductive hypothesis.

Case 4: A Block Elimination is applied to p. 

In order to apply this move, p must have type 
n

a b
with n=2a, thus 

b = a and k = gcd(a; b) = a. The claim now follows from the fact that p′ 

has type a
a

.

Case 5: A Pure Contraction is applied to p.

In order to apply this move, p must have type 
n

a b
 with n>2a, thus 

p′ has type 2−n a |a
b

. Now  

gcd(a, n−2a) = gcd(a, n−2a + a) = gcd(a, b) = k.

So, the claim follows from the inductive hypothesis.
Theorem 5.2. Let p seaweed subalgebra of sl(n) of type a b c

n
, 

n
a b c

, or a b

c d
. Let k = gcd(a + b, b + c), and let r ≡a mod k, and s≡b 

mod k, where 0 ≤r < k and 0≤s < k.

1. If r = 0 or s = 0, then the homotopy type is H(k). 

2. If r and s are nonzero, then the homotopy type is H(r, s). 

Proof. Note that k divides (a + b)−(a + c) = a−c, so r ≡ a ≡ c mod k. 

In the case that a seaweed has type a b

c d
, we have 2n = (b + c) + (a + d) 

and so, k = gcd(n, b + c) = gcd(n, a + d). Also, k divides (a + b)−(a + d) 
= b−d, so s ≡ b ≡ d mod k.

 Given any integer m≥2, we prove, by induction, that the theorem 
holds for all such seaweeds created using m winding-up moves. For the 
base of induction, the only seaweeds of this type that can be created by 
two moves are those created by two Component Creation moves. Such 

a meander has type a b

a b
and the homotopy type is H(a, b). Since k = 

gcd(a + b, b + a) = a + b, we have r = a and s = b, as desired.

 Now, let m > 2 and assume the theorem holds for all such seaweeds 

created using m−1 winding-up moves. Let p be a seaweed of type a b c

n
,

n
a b c

, or a b

c d
 created by m winding-up moves. Also, let k = gcd(a + b, 

b + c) and p′ be the seaweed obtained from p by applying the appropriate 
winding-down move, so that p′ is created using m−1 winding-up 
moves. We break the proof into cases depending on which winding-
down move is applied. For all cases except Component Elimination, p 
and p′ have the same homotopy type.

Case 1: A Flip is applied to p.

This case is trivial.

Case 2: A Component Elimination is applied to p.

To apply this move, p must have type 
a b

a b
. As noted above, the 

homotopy type is H(r, s), as desired.

Case 3: A Rotation Contraction is applied to p.

If p has type n
a b c

, then this move cannot be applied.

If p has type n
a b c

, then we must have n < 2a in order to apply this 

move, and p′ has type 
2

a
a - n b c

. Note that 
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gcd(c+b, b+2a−n) = gcd(b+c, a−c) = gcd(b+c, b+c+a−c) = k. 

So, by induction, p has homotopy type H(k) or H(r, s) depending on 
the values of r ≡ c mod k and s ≡ b mod k, respectively.

If p has type 
a b

c d
, then we must have c < a < 2c in order to apply this 

move, and p′ has type 
2

c b

c -a d
.

Now, gcd(c+b, c+d) = gcd(c+b, n) = k, so, by induction, p′ has 
homotopy type H(k) or H(r; s) depending on the values of r ≡ c mod k 
and s ≡ d mod k, respectively.

Case 4: A Block Elimination is applied to p.

If p has type a b c

n
, then this move cannot be applied. 

If p has type n
a b c

, then we must have n = 2a in order to apply 

this move. Therefore, b + c = a = n/2. Since p′ has type 
a
b c

, we know 

by Theorem 5.1 that the homotopy type is H(j) where j = gcd(c,b), but 
since j divides b+c = a, we also see that j divides a+b, so j≤k. Now, since 
k = gcd(a+b, b+c) = gcd(n/2+b, n/2), we have that k divides b, and so k 
also divides a and c. This implies k ≤ j. We conclude that k = j. Note that 
r = s = 0 and the homotopy type of p is H(k), as desired.

If p has type a b

c d
, then we must have a = 2c in order to apply this 

move, and p′ has type 
c b

d
. Again, by Theorem 5.1, the homotopy type 

is H(j) where j = gcd(c, b). Clearly, j divides b + c, and j also divides a 
+ b = 2c + b, so j≤k. Now, k divides (a + b)−(b + c) = a−c = c, so k also 
divides b and a. This implies that k≤j. We conclude that k = j. Once 
again r = s = 0 and the homotopy type of p is H(k), as desired.

Case 5: A Pure Contraction is applied to p.

If p has type a b c

n
, then this move cannot be applied.

If p has type 
n

a b c
, then we must have n > 2a in order to apply this 

move, and p′ has type 
2−n a a

b c
. Now gcd(b + c, a + b) = gcd(b + c, n) = 

k, so, by induction, p′ has homotopy type H(k) or H(r, s) depending on 

the values of r≡c mod k and s ≡b mod k, respectively.

If p has type a b

c d
, then we must have a > 2c in order to apply this 

move, and p′ has type 2−a c c b

d
. Note that 

gcd(a−2c+c, c+b) = gcd(a−c, b+c) = gcd(a−c+b+c, b+c) = k. 
So, by induction, p′ has homotopy type H(k) or H(r, s) depending 

on the values of r ≡ c mod k and s ≡b mod k, respectively.

The following example demonstrates that the homotopy type can 
sometimes distinguish between algebras when grosser invariants are 
unable to detect differences.

Example:  The seaweeds of type 
5 3

3 3 2
and 

4 4
2 4 2

both have 

dimension (27), rank (7), and index (1), but have homotopy types H(1, 
1) and H(2), respectively.

Summary and Looking Ahead 
We define a meander to be a planar graph associated to a seaweed 

algebra which is designed in such a way that the index of the seaweed 
may be computed by counting the number and type of connected 
components of the graph. Such combinatorial formulas have been 
established in the Type-A case by Dergachev and A. Kirillov [4] and in 
the Type-C case by Coll et al. [11] (and independently by Panyushev and 
Yakimova [5]). These elegant formulas are difficult to apply in practice, 
but in certain cases can be replaced by closed form linear greatest 
common divisor formulas based on the flags that define the seaweed 
in its standard representation. For maximal parabolics in the Type-A 
case, this was done early on by Elashvili, and later, as a corollary to their 
combinatorial result, by Dergachev and A. Kirillov, and still later by 
Coll et al., as a consequence of a more generalized formula. The Type-C 
case was addressed by Coll et al. in [10]. Investigations by Karnauhova 
and Liebsher [13] show that these formulas are the full complement of 
linear greatest common divisor index formulas available in the Type-A 
and Type-C cases.

The simplicial homotopy type of a meander is evidently well-
defined. Recent work of Moreau and Yakimova [12] establishes that 
the homotopy type of a Type-A seaweed is also well-defined, up to 
conjugation. In a forthcoming note, and after the fashion of this article, 
we will consider the Type-C case. In particular, we will establish that 
the homotopy type of a Type-C seaweed is a conjugation invariant. 
Furthermore, we will classify the homotopy types in all cases where 
linear greatest common divisor formulas for the index exist.

Finally, it follows from Joseph ([13], Theorem 8.4) that the index of 
a Type-B seaweed is the same as the index of a Type-C seaweed having 
the same flags. Consequently, the construction of Type-C meanders and 
related index formulas for Type-C seaweeds [10, 5], as well as results on 
the homotopy type of Type-C meanders, carry over Mutatas Mutandis 
to the Type-B case.
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