Measurement the Amount of Vitamin D$_2$ (Ergocalciferol), Vitamin D$_3$ (Cholecalciferol) and Absorbable Calcium (Ca$^{2+}$), Iron (II) (Fe$^{2+}$), Magnesium (Mg$^{2+}$), Phosphate (PO$_4^{-}$) and Zinc (Zn$^{2+}$) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques

A Heidari*
Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA

*Corresponding author: A Heidari, Faculty of Chemistry. California South University (CSU), 14731 Comet St. Irvine, CA 92604, USA, Tel: +1-775-410-4974; E-mail: Scholar.Researcher.Scientist@gmail.com

Rec date: March 15, 2016; Acc date: March 26, 2016; Pub date: March 31, 2016

Copyright: © 2016 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Opinion

According to the importance of Apricots in families’ nutrition basket, food chain and also its increased greenhouse, measure three of the nutrient and biochemical factors of Apricots were done [1-23]. Within the frame work of a plan, the amount of Vitamin D$_2$ (Ergocalciferol) and Vitamin D$_3$ (Cholecalciferol) in greenhouse and ordinary Apricots were compared together, respectively. Then, we made them pass through vacuum and collected the passed solution from High-Performance Liquid Chromatography (HPLC) columns and read them using some spectroscopic techniques such as Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), FT-Raman and UV-Vis spectroscopies (Figures 1-5). In this regard, after providing the passive sample and also example and standard samples, we presented their standard curves and reported the amount of their Vitamin D$_2$ (Ergocalciferol) and Vitamin D$_3$ (Cholecalciferol), respectively. After that, the results were analyzed using Mathematica 10. The results of regression method show this method possesses all of characteristics of proceed method, completely. Through comparing these two kinds of Apricots (green house and ordinary Apricots) together, it can be concluded that there is no striking difference between the amount of Vitamin D$_2$ (Ergocalciferol) and Vitamin D$_3$ (Cholecalciferol) in the two kinds of Apricots. Therefore, as a nutrient recommendation for consumers, we cannot believe in any differences between them due to the amount of Vitamin D$_2$ (Ergocalciferol) and Vitamin D$_3$ (Cholecalciferol).

Figure 1: ATR-FTIR spectrum of Vitamin D$_2$ (Ergocalciferol) in Apricot.

Figure 2: ATR-FTIR spectrum of Vitamin D$_3$ (Cholecalciferol) in Apricot.

Figure 3: FT-Raman spectrum of Vitamin D$_2$ (Ergocalciferol) in Apricot.
and Zinc (Zn²⁺) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat 7: 292. doi:10.4172/2155-6180.1000292

On the other hand, according to increased growth of greenhouse and ordinary Apricots and because of this crop is known as an enriched source of absorbable Calcium (Ca²⁺), Iron (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄³⁻) and Zinc (Zn²⁺) [24-45], this investigation has been done at Faculty of Chemistry of California South University (CSU) from March 2015 to March 2016 to determine the amount of Calcium (Ca²⁺), Iron (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄³⁻) and Zinc (Zn²⁺) in both of kinds of Apricots. After periodical sampling of greenhouse Apricots and providing them in vitro samples, we were able to extract their mineral salts and consequently the amount of absorbable Calcium (Ca²⁺), clearly. Therefore, although desirable of greenhouse Apricots is apparent, the amount of absorbable Calcium (Ca²⁺), Iron (Fe²⁺), Magnesium (Mg²⁺), Phosphate (PO₄³⁻) and Zinc (Zn²⁺) in it is lower than ordinary Apricots.

Figure 4: FT-Raman spectrum of Vitamin D₃ (Cholecalciferol) in Apricot.

Figure 5: UV-Vis spectra of (a) Vitamin D₃ (Ergocalciferol) and (b) D₃ (Cholecalciferol) in Apricot in different temperatures.

References

