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The Gini methodology is a family of mathematical models that 
describe various relations in or between variables [1,2]. The basic 
concept of Gini methodology is the Gini coefficient (also known as Gini 
index, or Gini ratio), which measures the inequality of a distribution 
(e.g., income) with values ranged from 0 (complete equality) to 1 
(complete inequality), has been popularly used in economics for 
quantifying the income inequality in a country [3,4]. Due to the 
superiority of analyzing data with normalized and non-normalized 
distribution [2], Gini coefficient and the derived statistical algorithms 
have been extended to apply in disciplines as diverse as social science, 
chemistry and engineering. Recently, the Gini methodology has also 
been introduced to biology for inferring transcription regulation 
relationships from gene expression data [5], and for exploring the 
symbiosis and pathogenesis of human immunodeficiency virus type 1 
(HIV-1) infection [6]. 

Application of Gini Co-efficient to Quantify the 
Connectivity In-equality (CI) in the GCN

Despite the connectivity distributions give some insights about how 
genes are connected in the GCN (Figure 1A), they fails to quantify the 
characterization of the connectivity in the whole network, leading to the 
difficulty of comparing two GCNs constructed for different biological 
conditions. Here the connectivity inequality (CI) is introduced 
to consider the distribution of connectivity of genes in the whole 
network with the Gini coefficient algorithm. The CI can be graphically 
represented with the Lorenz curve, which is a two-dimensional plot of 
the cumulative fraction of the number of genes in the network versus 
the cumulative fraction L(p) of total connectivity from these genes. The 
Lorenz curve more close to the diagonal line indicate that genes in the 
network are more equally connected. The Gini coefficient is equal to 

one minus twice the area under the Lorenz curve, and can be computed 
with the formula [10]:

1 ( )

( )1

(2 1)
CI =

( 1)
=

=

− −

−

∑
∑

n

i i
n

ii

i n X

n X
, where n is the number of genes in the 

network, X(i) is the ith value of connectivity sorted in increasing order, 
0 ≤ X(1) ≤ X(2) ≤…≤ X(n). We observed that the Lorenz curve from the 
GCN at the AIDS stage is markedly deviated from the diagonal line that 
those from the other three GCNs (Figure 1B). At the same time, the 
Gini coefficient from the GCN at the AIDS stage is much higher than 
those from the other three GCNs. These results indicate that dramatic 
changes of transcriptional regulation at the last stage of HIV infection. 

Application of Gini Coefficient to Estimate the 
Contribution of Positive and Negative Connectivity to 
the Connectivity Inequality (CI)

In the GCN, the connectivity of a gene is composed with positive 
and negative connectivity, which present the connection to other genes 
with positive and negative PCC values, respectively. The contribution 
of positive and negative connectivity to the overall inequality of 
connectivity in the network is defined based on the decomposition of 
Gini coefficient (1): 

p p p n n nCI = S (X ,X)CI S (X ,X)CIτ τ+ , where CI and CIn are the
inequality of positive and negative connectivity, respectively. Sp and 

n n pS (S 1 S )= −  are two Gini share measures represent the percentages 
of positive and negative connection in the whole network, respectively.   

p(X ,X)τ and n(X ,X)τ  are two Gini correlation coefficients ranged 
from -1 to 1, indicating the contribution of positive and negative 
connectivity to the CI, respectively. As shown in Figure 1D, Gini share 
of positive connectivity in four networks are remarkably higher than 
that of negative connectivity, indicating the positive regulation is the 
dominant relation in the network for uninfected subjects and patients 
at different stages of HIV-1 infection. Interestingly, the positive 
regulations were enhanced at the first two stages of HIV-1 infection. 
In contrast, The negative regulations at the AIDS stage were enhanced. 
From the HIV uninfected to the AIDS stage, the Gini correlation of 

*Corresponding author: Sheng-He Huang, Saban Research Institute of Children’s 
Hospital Los Angeles and the University of Southern California, Los Angeles, USA; 
Tel: 213-440-2528; E-mail: shhuang@usc.edu

Received December 02, 2013; Accepted January 27, 2014; Published January 
30, 2014

Citation: Ma C, Huang SH, Zhou Y (2014) Measuring Inequalities in Gene Co-
expression Networks of HIV-1 Infection Using the Lorenz Curve and Gini Coefficient. 
J Data Mining Genomics Proteomics 5: 148. doi:10.4172/2153-0602.1000148

Copyright: © 2014 Ma C, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Measuring Inequalities in Gene Co-expression Networks of HIV-1 
Infection Using the Lorenz Curve and Gini Coefficient
Chuang Ma1,2, Sheng-He Huang1,3* and  Yanhong Zhou3

1Saban Research Institute of Children’s Hospital Los Angeles and the University of Southern California, Los Angeles, USA
2School of Plant Sciences, University of Arizona, Tucson, AZ, USA
3Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China

HIV-1 is a virus that can cause acquired immunodeficiency 
syndrome (AIDS), leading to thousands of death per year in the world 
due to the lack of effective vaccines and cure. As one of powerful 
systems biology approaches, gene co-expression networks (GCNs) 
have been recently applied to investigate the molecular mechanisms of 
HIV-1 infection by organizing genes into a network, in which two genes 
with similar expression patterns are connected by an edge [6-8]. An 
in-depth statistical analysis of HIV-related network properties will be 
helpful to discover new biomarkers and signatures of HIV-1 infection. 
Here we applied the Gini methodology to explore inequalities in GCNs 
constructed with 943 genes differentially expressed in human lymphatic 
tissues of uninfected subjects and infected patients at different stages of 
HIV-1 infection (the acute, the asymptomatic, and the AIDS stages). 
More details about the microarray data generation and normalization, 
and the selection of differentially expressed genes can be found in Xu et 
al. [9]. To construct GCNs, the similarities of expression patterns between 
two genes were measured with Pearson correlation coefficient (PCC). 
Two genes were connected in the GCNs if the significance level (p-value) 
of PCC is lower than 0.05. The p-values were estimated with permutation 
method by shuffling gene expression data in the microarray dataset. 
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negative connectivity is changed more significantly than that of positive 
connectivity (Figure 1E), indicating that positive and negative co-
expression associations might play different roles in the pathogenesis 
of HIV infection.

Application of Gini Coefficient to Measure the Inequality of 
Edge Weights in GCNs

Besides the connectivity, the edge weights (i.e., correlation values) 
in GCNs were also changed during the HIV-1 infection. For a given 
gene i, the changes in the correlation strengths can be calculated 
using the differential co-expression (dC) measure with the formula 

[12]: 
m 1 0

ij ijj=1
(C -C )

dC(i)=
m

∑
 where gene i connects m genes in two 

networks, 1
ijC  and 0

ijC  represent the correlation values between 

gene i and j in two networks, respectively. In this study, we observed 
that there were differences in the inequality of edge weights between 
GCNs of HIV-1 infection (Figure 2). At the acute and asymptomatic 

stages of HIV-1 infection, the edge weights are more equal than 
those in network for uninfected subjects. However, the edge weights 
become dramatically unequal in network for patients at the AIDS stage 
(Figure 2). On this basis, a novel measure “delta Gini” was introduced 
to consider the differences in the inequality of edge weights between 
two networks. Although the delta Gini and dC were significantly 
correlated in most network comparisons (except AIDS vs. Uninfected) 
(Figure 3), the delta Gini provided additional information about the 
changes of edge weights between two networks. First, the delta Gini 
is ranged from -1 to 1, with positive value indicating the inequality of 
edge weights is increased and negative values indicating the inequality 
of edge weights is decreased. Second, the delta Gini is valuable to 
identify candidate biomarkers of HIV-1 with low rank of dC values. 
For instance, MRC1 is a mannose receptor interacting with several HIV 
proteins to promote viral spread [13-15], and has a delta Gini value 
of -0.44 (rank=2) and a dC value of 0.96 (rank=173) while comparing 
networks constructed for patients at the AIDS stage and for uninfected 
subjects. Similarly, PPFIBP1, which plays roles in HIV-1 replication, 
also has a high rank of delta Gini (value=-0.42; rank=3) but a low 

 

Figure 1: The connectivity in equality in the geneco-expression networks (GCNs) of HIV-1 infection.
(A) The connectivity distributions of GCNs for uninfected subjects and patients at different stages of HIV-1 infection.
(B) The Lorenz curves of connectivity distributionin four GCNs. prepresents the cumulative fraction of the number of genes in the network, L(p) denotes the 
cumulative fraction of connectivity from these genes.
(C) Gini coefficient of connectivity infour GCNs.
(D) Gini share of positive and negative connectivity in four GCNs.
(E) Gini correlation of positive and negative connectivity infour GCNs.

 

Figure 2: The inequality of edge weights in geneco-expression networks of  HIV-1 infection.“Uninf.” represent networks for uninfected subjects.
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rank of dC (value=0.89; rank=283). MDM4 is another representative 
example showing a positive and high-ranked delta Gini (value=0.36; 
rank=22), but a low-ranked dC (value=0.92; rank=235). This gene was 
recently demonstrated to be a direct calpain substrate playing roles in 
the HIV-induced neuronal damage [16]. The detailed values of delta 
Gini and dC for all comparisons of GCNs of HIV-1 infection were listed 
in Supplemental Table 1. 

These results indicate that Gini algorithm would be a complementary 
approach to dC for comparing the differences between two GCNs.
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