alexa Membrane Distillation: Principles, Applications and Perspectives | Open Access Journals
ISSN: 2155-9589
Journal of Membrane Science & Technology
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Membrane Distillation: Principles, Applications and Perspectives

Criscuoli A*

Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, Rende (CS) 87030, Italy

*Corresponding Author:
Criscuoli A
Institute on Membrane Technology (ITM-CNR)
via P. Bucci 17/C, Rende (CS) 87030, Italy
Tel: +39-0984-49211
E-mail: [email protected]

Received date: August 29, 2017; Accepted date: August 31, 2017; Published date: September 03, 2017

Citation: Criscuoli A (2017) Membrane Distillation: Principles, Applications and Perspectives. J Membr Sci Technol 7:e123. doi: 10.4172/2155-9589.1000e123

Copyright: © 2017 Criscuoli A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Membrane Science & Technology


Membrane Distillation (MD) is a membrane-based operation able to give 100% theoretical ions rejection and to efficiently work with high concentrated brines. Both features make MD of interest for the purification of wastewater, the production of ultra-pure water and the concentration of brines produced in desalination. MD, also integrated with other membrane operations, can be a valuable way to improve the performance of separation processes.


Membrane distillation; Wastewater treatment


MD is a thermally-driven membrane operation where the vapor molecules evaporate from the feed thanks to a difference of vapor pressure created across the membrane. Through the evaporation it is possible to produce a pure distillate and to concentrate the feed. The membranes employed are hydrophobic and porous. Polymeric membranes made of polypropylene (PP), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) are the most used, although some studies on zeolite and ceramic membranes have been also carried out. If compared to conventional distillation units, MD is able to work with smaller footprint and lower operating temperatures. Typical operating temperatures are around 50°C-80°C and waste heat or renewable sources, like solar energy, can be used to heat the feed. If compared to pressure-driven membrane operations, MD operates at lower pressures (usually at atmospheric pressure) and is able to treat high concentrated streams, due to the lower effect of concentration polarization on its performance. Its potentialities have been proven for many types of separations, as well documented by the huge amount of papers published in the field [1-24].

Main Principles and Applications of Membrane Desalination

There are four main configurations of MD, that differ in the way the difference of vapor pressure is created and the distillate recovered (Figure 1). Direct Contact Membrane Distillation-DCMD (Figure 1a) is the simplest one, using a cold stream to promote the difference of temperature across the membrane; in this case vapor condenses directly into the cold stream. Air Gap Membrane Distillation-AGMD (Figure 1b) presents an air gap in which the vapor diffuses before condensing. Sweep Gas Membrane Distillation-SGMD (Figure 1c) uses a sweep gas to remove the permeating vapor, while Vacuum Membrane Distillation-VMD (Figure 1d) applies vacuum. In both cases, the vapor is liquified in an external condenser.


Figure 1: Simplified schemes of MD configurations: a) DCMD; b) AGMD; c) SGMD; d) VMD.

The efficiency of the MD is strongly dependent on the membrane properties. To make the process happening, it is essential to work with hydrophobic membranes. Pore size should be of the order of few microns and has to be chosen with the objective of working with reasonable fluxes and high Liquid Entry Pressure (LEP), to reduce the wetting risk. A typical value of pore size is around 0.2 μm. High porosity values should be preferred, for both enhancing the flux and reducing the heat loss by conduction through the membrane matrix, particularly for DCMD. Thickness plays also an important role, influencing the flux, the mechanical resistance and the heat loss by conduction.

Being a thermally-based process, the efficiency of MD is often evaluated in terms of Gained Output Ratio (GOR), that gives information on how much of the supplied heat has been used for the evaporation (useful heat).

MD finds application in different sectors, as summarized in Table 1.

Concentration and purification of wastewaters (dairy effluents, olive mill wastewaters, textile effluents, etc.)
Treatment of gas produced waters
Treatment of waters contaminated by toxic compounds, like boron, arsenic, uranium, fluoride, etc.
Treatment of brines and high-concentrated waters
Treatment of radioactive waters
Ultra-pure water production
Fruit juice concentration
Dehydration of solid particles

Table 1: Some fields of application of MD.

Conclusion and Future Perspectives

MD has a good potential for the purification and concentration of streams and the growing number of researches on MD clearly documents the interest in the field. It is expected that improvements in the membrane properties and the development of membrane modules specifically designed will drive the application of MD at large scale.


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 98
  • [From(publication date):
    August-2017 - Oct 20, 2017]
  • Breakdown by view type
  • HTML page views : 77
  • PDF downloads :21

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version