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Introduction
The hematopoietic stem cells (HSC) reside in privileged sites in the 

bone marrow (BM) which are termed the HSC niches (endosteal and 
vascular niches). In these locations, a wide variety of cells including the 
bone lining osteoblasts, vascular endothelial cells, osteoprogenitors, 
MSC/stromal cells, osteoclasts, adipocytes, macrophages, immune 
and neural cells has been proposed to play a crucial hematopoietic 
regulatory role [1,2]. In respect of MSC, the BM, adipose tissue, 
muscles, synovium, placenta and umbilical cord are enriched in these 
cells [3]. Of note, characterization of cultured MSC relies on the 
expression of CD73, CD90, STRO-1 and CD105 and lack of HLA-DR, 
endothelial (CD31) and hematopoietic (CD34 and CD45) markers (4). 
Further identification standards of MSC are based on their adherence 
to plastic surfaces, self-renewal and differentiation potential into 
osteoblasts, adipocytes and chondrocytes. Nevertheless, their capacity 
to differentiate into neurons, skeletal muscle and myocardium was also 
discussed [4-7]. 

The prospective MSC isolation from different tissues depends on 
the expression of more specific molecules such as CD271, CD146, 
mesenchymal stem cell antigen-1 (MSCA-1), Oct4, Nanog, surface 
specific embryonic antigen-4 (SSEA-4) and Ganglioside2 (GD2) [8,9] 
(Table 1).

Under normal physiological conditions, MSC are not circulating, 
however, activation by tissue damage results in their proliferation, 
differentiation and migration [10]. In this respect, several factors are 
implicated in the mobilization and homing of MSC such as insulin 
growth factor-1(IGF-1), the high mobility group box-1 (HMGB-
1), the basic fibroblast growth factor (b-FGF) and CXCL-5 [10-12]. 
A combination of erythropoietin (EPO) and granulocyte-colony 
stimulating factor (G-CSF) was reported to promote MSC migration 
through enhanced ERK1/2 signaling and expression of matrix 
metalloprotein-2 (MMP-2) [13].

Of interest, MSC stemness and survival are promoted by hypoxia 
through mechanisms involving autophagy and up-regulation of self-

renewal markers such as oct-4, sox-2 and Nanog [14,15]. However, 
MSC fate is regulated by several signaling cascades involving the 
canonical Wnt and TGF-β superfamilly. Given the diversity of Wnt 
proteins and receptors expressed on MSC, Wnt3a interaction with 
MSC was reported to promote proliferation of undifferentiated MSC 
rather than MSC differentiation into osteoblasts. On the other hand, 
interaction of TGF-β3 with its specific receptor on MSC was reported to 
trigger intracellular signaling molecules including SMAD proteins that 
promote chondrogenic differentiation [16-18]. Other growth factors 
including the BMP family, IGF, PDGF and FGF act in concert with Wnt 
and TGF-β signaling pathways to direct MSC differentiation [16,19]. 
For instance, activation of BMP2 and IGF2 were reported to promote 
the osteogenic differentiation of CD271+MSC [20]. Other monitors of 
MSC differentiation are the micro-RNA (mi-RNAs). This latter are 19-
22 nucleotide fragment of non-coding RNA that affect various cellular 
process through post-transcriptional regulation of target genes [21]. A 
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Table 1: In vitro characteristics of MSC.

Surface markers
Positive:    STRO-1, CD73, CD90, CD105, CD146,

CD271, MSCA-1
Negative:   CD34, CD45, CD31, HLA-DR

Differentiation
potential Osteogenic, Adipogenic, Chondrogenic

Properties
Colony formation: CFU-F
Adherence
High proliferative potential
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large array of mi-RNA has been reported to accelerate or inhibit MSC 
commitment and lineage differentiation. In this context, expressed 
miRNA-335 and its encoding gene MEST (mesoderm-specific 
transcripit homology) in the pluripotent MSC can be modulated by 
interferon-γ (IFN-γ) leading to MSC differentiation [21].  Indeed, the 
differentiation of MSC is dependent on the mechanisms that control 
the specific cell lineage and those suppressing the development of other 
lineage. For instance, the expression of mi-RNA-140 was reported as 
a specific regulator of chondrogenic differentiation acting, in part, 
through repression of both CXCL-12 and metalloproteinase with 
thrombosponin motifs (ADAMTS)-5 [22]. MSC commitment and 
differentiation towards adipocytes is under the control of signaling 
cascade emitted by many agents including BMP, Wnt, TGF-β, insulin 
and several transcription factors such as CCAAT/enhancer binding 
protein (CEBPs) and peroxidase proliferator activated receptor 
(PPAR-γ). Several mi-RNA have been reported to interact with different 
signaling pathways leading to either enhancement or repression of 
adipogenesis [23]. In this regard, mi-RNA 27a has been reported to 
suppress adipocyte differentiation through PPAR-γ down regulation 
[24]. On the other hand, mi-RNA 17-29 cluster have been reported to 
accelerate adipocyte differentiation by negative regulation of tumor-
suppressor Rb2/p130 [25]. Similarly, several types of mi-RNA can 
modulate signaling pathways and transcriptional factors responsible 
for osteoblastic differentiation. For instance, mi-RNA 206 was reported 
to inhibit osteoblastic differentiation through targeting connexin 43 
[26]. However, mi-RNA 133 and mi-RNA 135 inhibit oeteogenesis by 
targeting Runex2 and SMAD 1/5 [27]. On the other hand, mi-RNA 
2861 supports BMP2 signaling pathway, hence, promoting osteoblastic 
differentiation [28]. Given the importance of mi-RNA in managing 
MSC differentiation, we hypothesize that future modulation of their 
expression might be a tool for the induction of a particular lineage of 
MSC differentiation useful for in tissue engineered therapy.  

Origin and Localization of MSC within the BM 
Recent studies consistently reveal that MSC are generated in two 

waves: the first one neuroepithelial-derived and the second one is of 
non-neural origin [29]. The earliest MSC wave is emerged from the 
neural crest stem cells (NCSCs), which then migrate from the dorsal 
neural tube to the aorta-gonads- mesonephros (AGM) region before 
they join the BM [30,31].  However, the adult perivascular tissue was 
proposed as the non-neural origin of MSC.  This suggestion is relied on 
the following observations: (A) - the expression of certain markers like 
CD146, NG2 and platelet derived growth factor receptor –β (PDGF-R 
β) by both the pericytes and MSC (B) - the potential of both MSC and 
pericytes to differentiate into osteoblasts, chondrocytes and adipocytes, 
(C) - localization of MSC expressing the pericyte marker, 3G5, in the 
perivascular niche [3,32,33].   The odontoblasts and the inter-vertebral 
disc were additionally reported as non-neural sources of MSC [3,34]. 

Of interest, epithelial to mesenchymal transition (EMT) was proposed 
as a potential origin of MSC. In such process, the epithelial cells 
lose polarization and basal junction with subsequent cytoskeleton 
reorganization and lastly acquire a mesenchymal like identity such as 
the multipotent differentiation potential [35]. 

Localization of MSC in the HSC niches revealed the presence of 
CD271+ MSC subtype in close vicinity to the bone lining cells and in 
the BM parenchyma. These CD271+MSC were reported to express 
Oct4 and SSEA-4 multipotent markers and possess the potential to 
differentiate into osteogenic, adipogenic, pericytic lineages [8,16,36]. 
However, MSC CD146+, were detected in association with the BM 
sinusoids and do express VCAM-1, CD44 and PDGFR-α and β while 

lacking the expression of pan endothelial marker (CD31/PECAM-1) 
and the smooth muscle α-actin [37,38]. A subpopulation of MSC 
CD146+ cells with long dendrites do express high levels of CXCL-12 
and are termed CXCL12-abundant reticular (CAR) cells [39,40].  This 
latter, are capable to differentiate into adipo-osteogenic progenitors and 
can support homing and maintenance of the HSC. In addition, CAR 
cells have demonstrated a role in the development of B lymphocytes, 
plasmacytoid denderitic and NK- cells [41,42]. Worthy mentioning, 
the co-expression of CD146 and CD271+ on MSC is dependant 
on aging and the localization of these cells within the BM niche. In 
this respect, MSC CD271+ CD146+ was reported as the prevalent 
phenotype in the fetal BM being substituted by CD271+CD146- cells 
in the adulthood [43]. The oxygen gradient within the BM niche might 
underlie the prevalence of MSC CD146+ in the perivascular niche and 
MSC CD271+ in the hypoxic endostium [8,44].

In addition, the perivascular niche harbors a MSC subtype expressing 
the intermediate filament protein, Nestin. This subpopulation is a self-
renewing with a tri-lineage differentiation potential and do express high 
levels of HSC maintenance genes including SCF and Angiopoietin-1 
(Ang-1) [45]. Furthermore, MSC Nastin+ are in spatial association 
with both HSC and adrenergic nerve fibers where HSC retention is 
regulated by opposing signals derived from the sympathetic nerve 
fibers and the adjacent macrophages [46]. Of interest, implication of 
the immune T cells in the induction of the osteoblastic lineage was 
recently reported following intermittent treatment of MSC Nestin+ by 
parathyroid hormone (PTH) [47]. In this context, the interaction of the 
PTH with its specific receptor (PTH- related protein receptor, PPR), 
expressed on the T lymphocytes will trigger the production of Wnt10b 
that triggers the Wnt signaling pathway in MSC with subsequent 
osteogenic differentiation [47,48].  

Furthermore, MSC expressing leptin receptors (lepr+ MSC) 
were identified mainly in the perivascular niche. Leptin is a cytokine 
expressed in the white adipose tissue and acts centrally by stimulating 
the hypothalamus with subsequent expression of several neuropeptides 
that contribute to bone loss. Alternatively, through a peripheral 
mechanism, leptin binds to the specific receptors expressed on the 
MSC resulting in enhanced osteogenic differentiation. Of note, lepr+ 
MSC do not express nestin, however, they do express high levels of 
CXCL-12 suggesting an overlap with CAR cells [49,50]. Of note, 
a balanced differentiation of MSC into osteoblasts and adipocytes 
is required for optimal niche function. However, aging favors the 
formation of adipocytes that negatively regulate the hematopoiesis, 
partially, through the secretion of adiponectin [51]. Taken together, 
these studies provide evidence that MSC subpopulations are important 
players in the BM HSC niches. 

MSC Orchestrate HSC Fate in the BM Niche
The osteoblastic and the perivascular niches have been described 

as privileged zones for regulation of HSC fate. The osteoblastic niche 
is preferentially located in the epiphysis of long bones, precisely, in the 
trabecular’s endosteum and to a lesser extent in the cortical bone of the 
diaphysis (bone shaft). However, the perivascular niche encircles the 
BM vasculature [52,53]. 

In the mouse, using SLAM family receptors, HSC were detected 
adjacent to the vascular endothelium all through the BM and nearby 
the trabecular endostieum. Nevertheless, multipotent and restricted 
progenitors were distributed although the long bone diaphysis [53-55]. 
Otherwise, multimodal imaging protocols have proved the presence of 
two putative HSC niches, namely, the reconstitution and the homeostatic 
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niches [56]. The former includes the BM zones displaying the highest 
bone remodeling activity and enhanced blood supply thus allowing 
for HSC cycling and augmentation of the hematopoietic stem and 
progenitor cell pool. Alternatively, the latter niche is evenly distributed 
all through the BM and harbors the steady-state HSC (in the G0/G1 
phase of the cell cycle) [57].  Indeed, localization of hematopoietic stem 
and progenitor cells in a given zone is likely dependent on its cellular 
and cytokine profile. For instance, cells of the perivascular niche 
including CAR, Nestin+ MSC, Lpr+ MSC and endothelial cells were 
reported as the main physiological source of CXCL-12 and SCF. Of 
interest, conditional deletion of these cytokines from the perivascular 
stromal cells and endothelial cells resulted in selective depletion of 
HSC while lymphopoiesis was spared, most likely due to localization 
of lymphopoiesis in the endosteal niche [50-57]. In this latter location, 
the osteoblasts and the neighboring MSC were proved to produce a 
number of factors including CXCL-12, IL-7 and SCF which are known 
to maintain the common lymphoid cells and B-lymphoid progenitors. 
Accordingly, deletion of SCF from the osteoblasts, CAR and Nestin+ 
MSC was reported to deplete the B-lymphoid progenitors with no 
deleterious effect on the HSC frequency or function [50]. Likewise, 
conditional deletion of CXCL-12 from the osteoblasts resulted in 
depletion of the lymphoid lineage rather than the HSC [58,59]. 

There is ever-increasing evidence for the necessity of a specialized 
BM microenvironment to promote HSC division indispensable for 
self-renewal and production of various differentiating descendants. For 
instance, after transplantation, HSC divide rapidly and symmetrically 
to replenish the stem cell pool. Some of these cells polarize and 
divide asymmetrically to give one identical stem cell and another cell 
designated to differentiate after several rapid symmetric divisions. The 
initial symmetric HSC division is independent of regulatory cytokines. 

Yet, contact with the supporting microenvironment seemed critical for 
symmetric and asymmetric division of both primitive and committed 
progenitors. Such contact with stromal cells promotes the expression 
of a battery of HSC genes that regulates adhesion, cytoskeleton 
rearrangement and DNA repair [60,61]. The spatial distribution of 
the adhesion molecules plays a key role in defining the cell shape and 
the asymmetric cell division through biases of polarized actin and 
microtubules networks as well as biases of segregated DNA which 
dictates distinct fates for generated daughter cells [62,63]. Of interest, 
myosin-IIB (MYIIB) represents the major non muscle myosin II 
isoform in hematopoietic stem and progenitor cells. The contractile 
forces of polarized myosin-IIB (MYIIB) could influence the differential 
segregation of HSC fate determinants and tapering of MYIIB isoform 
was observed along with the HSC differentiation being replaced by the 
activated MYIIA isoform [64].

Of note, HSC fate in terms of self-renewal and differentiation into 
terminally mature progenies is under the control of key regulators 
involving Wnt and Notch that work in concert with other signaling 
pathways for establishing a balance between these two opposing cell 
outcomes [65]. For instance, Wnt ligands, expressed by BM MSC and 
primitive HSC, were reported to function via paracrine and autocrine 
mechanisms leading to canonical or non- canonical signaling pathway 
activation. In the former one, the downstream signaling is established 
by binding of Wnt ligand with Frizzled receptor/Lrp co-receptor, 
followed by stabilization and nuclear transfer of β-catenin which binds 
to T-cell factor complex leading to the expression of several target genes 
[66,67]. Nevertheless, the impact of Wnt on the HSC and committed 
progenitors was debatable. In one study, enhanced autonomus canonical 
Wnt signaling in HSC by retroviral over-expression of β-catenin was 
reported to expand the HSC while inhibiting their differentiation both 

in vitro and in vivo [68]. In other studies, deletion of β and γ-catenin 
revealed no effect on HSC frequency and differentiation potential. The 
existence of other functionally active pathway has been proposed as 
a possible compensatory mechanism to overcome the double absence 
of β and γ-catenin [69,70]. Worthy mentioning, MSC- paracrine Wnt 
secretion was reported to induce HSC quiescence, in part, through 
up-regulation of the cyclin dependent kinase inhibitor, p21 [71,72]. 

However, autonomus Wnt signaling in MSC was reported to repress 
HSC retention factors including angiopoietin-1, SCF and VCAM-1 
leading to HSC activation [73].

In non-canonical Wnt signaling, activation of Wnt/JNK/PCP or 
Wnt-Ca+2 pathways is dependent on the employed member of Wnt’s 
family and the type of the engaged receptor [65,74]. Again, the influence 
of the non-canonical Wnt signaling on HSC is controversial. For 
instance, Wnt5a injected into mice engrafted with human repopulating 
cells have enhanced the HSC multilineage reconstitution potential 
[75]. However, others have demonstrated that Wnt5a maintains HSC 
in a G0 state. A possible antagonistic response between Wnt5a and 
Wnt3a on HSC was proposed as a possible mechanism for the observed 
HSC quiescence [74,76]. Indeed, quiescence of HSC pool is under the 
control of other soluble Wnt antagoniste including Wnt inhibitory 
factor-1 (WIF-1) secreted frizzled-related proteins (SFRPs), sclerostin 
(SOST) and Dickkopf (DKK). These Wnt antagonists are secreted by 
MSC, BM stromal cells, osteoblasts and osteoclasts [65].

In addition to Wnt signaling, Notch activities have been implicated 
in controlling HSC biology. Notch signalling is triggered by the 
interaction of Notch ligand with the appropriate receptor leading 
to nuclear translocation of the receptor’s intracellular domain and 
ultimate transcriptional regulation of multiple genes including Hes 
or Hes related (Hrt) family genes. These genes encode for basic HLH 
proteins that, in general, function as DNA-binding transcriptional 
repressors [77]. 

The dual capacity of the BM stromal cells, in terms of eliciting 
and responding to Notch signalling, was attributed to simultaneous 
expression of Notch-receptors and Jagged-1 [78]. Of interest, treatment 
of mice with intermittent parathyroid hormone (PTH) revealed 
enhanced Jagged-1 expression in osteoblasts with subsequent Notch 
signaling in HSC leading to their expansion [79].

Furthermore, mouse primitive HSC transduced with retrovirus 
encoding for Notch-1 revealed enhanced potential to self-renewal 
and differentiation to myeloid and lymphoid lineages both in vivo and 
in vitro [80]. Moreover, human-mouse xenotransplantation models 
proved evidence that Jagged-1 can maintain and expand primitive 
human hematopoietic cells capable of multi-lineage reconstitution in 
vivo without loss of progenitors [78,81].

Worthy mentioning, HSC fate regulation engage other molecules 
including osteopontin and thrombopoietin-1 which are involved in 
anchoring the HSC to the niche and ensure their maintenance in G0 
stage of the cell cycle [9,82]. The perivascular Schwann cells, marked by 
glial fibrillary acidic protein (GFAP), also play a role in the induction 
of HSC quiescence through the activation of latent TGF-β [83]. In 
addition, local calcium gradient and hypoxia in the endosteal share 
in maintenance of the HSC quiescence [41]. Hypoxia was reported 
to induce the expression of cyclin dependent kinase inhibitor genes 
and the accumulation of the hypoxia inducing factor-1 (HIF-1) with 
subsequent up-regulation of HSC maintenance genes [84]. Of interest,  
acute lymphoid leukemia (ALL), even under normal oxygen tension, 
showed selective activation of HIF-1α with subsequent activation of 
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Notch signaling leading to expansion of leukemic pool [85,86]. Similar 
augmentation of HIF-1α was reported in CML stem cells, explaining in 
part, their survival and resistance to conventional chemotherapy [87]. 
Taken together, the interference with HIF signaling pathway might be 
a successful approach to execute malignant cells. 

MSC play a crucial role in HSC traffic, in part, through CXCR4/ 
SDF-1, SCF/c-Kit and Slit-2/Robo-4 axis [88,89]. In addition, 
perivascular Nestin+ MSC, in response to sympathetic nerve signaling, 
were reported to slow down the expression of HSC retention factors 
including the CXCL-12, Ang-1, SCF and VCAM-1 leading to egression 
of HSC out of the BM. Nevertheless, neighboring CD169+macrophages 
have indirect HSC holding action which can be inhibited by G-CSF 
leading to release of HSC in the peripheral circulation [90,91]. As a 
final point, MSC could influence the HSC fate through modulation of 
the immune response.  One scenario implicates the secretion IFN-γ 
by activated NK cells which, in turn, augment HLA-G expression on 
MSC. Binding of HLA-G to the inhibitory receptor ILT2 expressed 
on NK cells will lead to suppression of NK downstream signaling 
pathway [92]. Other mechanisms relay, in part, on the inflammatory 
cytokine that up-regulate a variety of MSC adhesion molecules 
including ICAM-1 and VCAM-1 [93]. Furthermore, suppression of 
BM microenvironment might be the consequence of MSC production 
of inhibitory cytokines, nitric oxide, cyclooxygenase and indolamine 
2,3 dioxygenase (IDO) [94,95]. 

MSC-leukemic Stem Cell Crosstalk  
Experimental transplantation models of human LSC into 

immunodeficient mice have proved that leukemic stem cells (LSC), 
like their normal HSC counterparts, reside in specific niches in the 
BM microenvironment. In this location, LSC engraft the endosteal 
niche and expand to the neighboring perivascular endothelium prior 
to evasion of the peripheral circulation [96]. Modulation of the BM 
microenvironment might be a prerequisite for changing the outcome 
LSC. In this regard, mice treated with PTH were shown to express 
high levels of TGF-β1 owing to osteoblastic cell activation and bone 
remodelling. In this model, transplantation of myeloid LSC showed 
maintenance inhibition of chronic myeloid leukaemia (CML) and 
attenuation of CML disease manifestations. Alternatively, under the 
same experimental conditions, acute myeloid leukaemia (AML) was 
insensitive to increased TGF-β1 and revealed accelerated engraftment 
likely due to deficient expression of TGF-β1 receptors in this type of 
leukaemia. Taken together, these studies prove a differential sensitivity 
of CML and AML to TGF-β1-modified BM microenvironment and 
propose the use of PTH treatment for boosting the CML-specific 
therapy [97]. 

Further modification of the BM microenvironment was achieved by 
an experimental deletion of Dicer 1 gene in early osteoprogenitors [98]. 

Such intervention provoked the development of myelodysplasia and 
AML in the manipulated mice and indicated that genetic anomalies in 
the endosteal niche could be a predisposing factor for the development 
of LSC [98].

Of interest, in myelodysplastic syndrome (MDS), MSC have 
demonstrated critical aberrations including, among others, epigenetic 
changes, reduced proliferation and impaired osteogenic differentiation 
as well as premature senescence. Furthermore, the expression of key 
molecules engaged in the interaction with HSC such as osteopontin, 
jagged-1, SCF and Ang-1 was reduced [99]. Alternatively, normal in 
vitro MSC support of hematopoiesis was reported by other investigators, 
in spite of the presence of severe chromosomal aberrations in MDS-

MSC [100]. Indeed, there is mounting evidence for a multitude ways 
in which the MSC can support a variety of malignant hematopoietic 
disorders. For instance, MSC can enforce LSC survival and adhesion, 
in part, through the secretion of various inflammatory mediators 
including CCL2, and IL-8 as well as the expression of CD44 adhesion 
molecule [101,102]. The importance of CXCL-12/CXCR-4 axis in CML 
homing and mobilization was proved during imatinib treatment which 
enhanced CXC-R4 expression on the leukemic cells, thus, facilitating 
their mobilization of to the BM [103]. However, selective blockage of 
CXCL-12/CXCR-4 axis by AMD3100 or AMD11070 molecules, in 
association with the appropriate chemotherapy, was used as a tool for 
eradicating residual leukemia cells [104,105]. 

Additionally, BM stromal cells were reported to express high levels 
of placental growth factor (PGF) which is implicated in enhanced 
angiogenesis and CML growth. In a mouse model of human CML, 
a therapeutic protocol combining PGF inhibitor and imatinib was 
reported to enhance survival of affected mice [106]. 

Additionally, MSC expression of asparagine synthetase and 
secretion of asparagine was reported to defend ALL cells from 
asparaginase cytotoxic effect [107].

In multiple myeloma (MM), protection of the malignant cells from 
the apoptotic action of bortezomib was achieved by the agonistic action 
of IL-6, secreted by MSC, and the vascular endothelial growth factor 
(VEGF) [108,109].

Yet, MSC from MM patients revealed impaired osteogenic 
potential which could explain, in part, the defective bone formation 
in later stages of the disease [110]. Worthy mentioning, BM infiltration 
with malignant lymphoma cells was reported to be associated with 
ectopic lymph node follicular-like reticular cells (FRC). These latter, 
represent BM MSC that acquire a complete FRC phenotype under 
the influence of lymphocyte- secreted cytokines including the TNF-α 
and lymphotoxin α1β2. These ectopic lymph nodes will recruit more 
lymphoma cells and promote their survival and multiplication [111]. 

The BM is a referred site for breast and prostate cancer metastasis 
where MSC and their progeny are integrated in the cancer niche. In 
this location, stromal fibroblasts represent a mixture of normal and 
cancer associated fibroblasts (CAF). These latter might represent 
a state of epithelial to mesenchymal transformation of the tumor 
parenchyma or might be a consequence of chronic inflammation and 
tumor epithelial dysplasia. The secretion of TGF-β was reported to 
accelerate the differentiation of MSC into CAF that are recruited to 
the tumor area in SDF-1α dependent manner [112]. SDF-1 can trigger 
CAF cells via JAK2/STAT3 and MAPK/ERK signaling pathways with 
subsequent organization of actin filaments and cytoskeleton [113,114]. 

Furthermore, SDF-1 was reported to recruit endothelial progenitor 
cells (EPCs) into carcinomas, thus, promoting the angiogenesis and the 
tumor growth [115]. Other mechanisms implicating MSC in the tumor 
growth include inhibition of dendritic cell co-stimulatory markers and 
IL-10 secretion, secretion of pro-angiogenic growth factors and the 
potential to differentiate into fibroblasts, pericytes and endothelial-
like cells [116,117]. Besides, MSC might provide tumor protection 
likely through the production of several anti-apoptotic factors such as 
hepatocyte growth factor (HGF), insulin-like growth factor (IGF-1), 
basic fibroblast growth factor (b-FGF) and granulocyte/macrophage 
colony stimulating factor (GM-CSF) [118].

Alternatively, MSC could inhibit tumor growth by several 
mechanisms including the secretion of pro-inflammatory cytokines that 
enhance infiltration of macrophages and monocytes to the tumor area 
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[119]. DKK-1 secretion by MSC and inhibition of β-catenin signaling 
were reported to inhibit the breast cancer [120,121]. Similarly, the 
secretion of TGF-β3 and HGF has been demonstrated to interfere with 
the proliferation of hepatic cell carcinoma via up-regulation of p21, p27 
and subsequent inhibition of ERK1/2 signaling pathway [122].

Whether MSC and a given type of leukemic cells would share the 
same genetic abrasion was the field of debatable data. For instance, 
the detection of mixed-lineage leukemia (MLL-4) fusion gene, 
characteristic of infant acute lymphoblastic leukemia (pro B-ALL) in 
both LSC and MSC, has suggested a common emerging cellular origin 
[123,124]. However, other studies have demonstrated that MSC are 
spared of the chromosomal anomalies characterizing the malignant 
clone in CML, Ph+, bi-phenotypic leukemia or myelodysplastic 
syndrome JAK2 V617F [125-127].

MSC-based Therapy-in the Context of Malignant 
Disorders 

MSC are used experimentally in a variety of clinical contexts 
seeking for tissue repair, eradication of malignant cells as well as the 
treatment of graft-versus-host disease and autoimmune diseases. Such 
opportunity is attributed to MSC immune modulation capability, 
lack of immunogenicity and secretion of a wide range of mediators 
involving interleukines, chemokines as well as anti-inflammatory and 
angiogenetic factors. Additionally, MSC behavior of tumor tropism 
and their potential for drug and gene delivery were believed crucial for 
targeting cancer cells [128]. To achieve this therapeutic goal, attention 
must be paid to ex-vivo expansion protocols. For instance, the addition 
of exogenous growth factors such as FGF-β to the culture media has 
been reported to optimize the proliferation of CB-derived MS [129]. 
Furthermore, culture of dermis isolated stem cells under hypoxic 
condition has been reported to enhance ex vivo chondrogenesis, hence, 
the MSC potential for cartilage engineering [130]. The presence or 
absence of xeno serum in the culture media is another contributing 
factor for MSC expansion [131]. Culture media supplemented with 
autologous activated platelet-rich plasma, in replacement of fetal 
bovine serum, was proved safe and efficient in expanding the limited 
harvest of umbilical cord blood (UCB)-MSC with conservation of 
their multi-differentiation potential [132]. Likewise, replacement of 
the animal serum with human platelet lysate was reported to promote 
growth and expansion of BM-MSC in clinical scale cultures [133]. 

Taking into consideration the risk of transformation during the 
process of culture, regular karyotype and telomerase examination 
are highly recommended to ensure absence of mutations and genetic 
aberrations in expanded MSC [134]. Selection of MSC donor age, the 
use of adequate MSC numbers, the choice of the route and timing 
of MSC administration are also required for attaining good results 
[135]. Of interest, MSC transplantation trials in adult individuals 
have reported no significant safety signals except the development 
of transient fever. Yet, several adverse events such as acute infusion 
toxicity, infections and different organ dysfunction have been recorded 
in a low scale and require further investigations [136].

In view of their immunosuppressive potential and the regenerative 
capacity, MSC were used to prevent graft versus host disease (GvHD) 
in allogenic transplantation settings. There is ever-increasing evidence 
for enhanced proliferation and engraftment of HSC following co-
transplantation of MSC and CD34+. This effect could be explained by 
boosting T cell recovery and interference with graft-versus-host disease 
development [137]. The MSC production of cytokines involving IL-
2, G-CSF and GM-CSF could underlie, in part, the observed HSC 

proliferation. MSC secretion of anti-inflammatory cytokines including 
IL-4 and IL-10 were believed to support the development of CD4+T-
regulatory cell (Treg), thus controlling the development of GvHD 
[138,139]. Of interest, optimization of the MSC immunomodulatory 
effect could be attained by priming with certain inflammatory mediators 
such as IFN-γ, IL-1b and TNF-α [134]. Additionally, pretreatment of 
MSC with β-catenin was reported to enhance HSC self-renewal in an 
experimental transplantation model. Hence, Wnt-treated MSC was 
suggested to be an attractive tool in HSC transplantation settings [140].

The use of MSC for targeting malignant cells relies on several 
mechanisms including tumor tropism and the capacity to deliver 
therapeutic genes to the tumour niche. Indeed, certain factors 
including the monocyte chemotactic protein-1 (MCP-1), IL-8, TGF-β 
and VEGF were reported as a requirement for MSC migration and 
tumor invasion [141,142]. In addition, there is a mounting evidence for 
successful use of engineered MSC expressing certain genes for targeting 
malignant cells. In this regard, MSC engineered for herpes simplex 
virus thymidine kinase gene expression were used in the presence of 
ganciclovir for targeting glioma cells [143]. Additionally, intra-tracheal 
injection of MSC expressing CX3CL-1, an immuno-stimulatory 
chemokine, was reported to inhibit certain experimental lung tumors 
[144]. The antitumor activity of recombinant human TRAIL (TNF-
related apoptosis inducing ligand) was previously reported. However, 
its use in vivo was limited by its rapid clearance and short plasma half-
life. Interestingly, MSC- TRAIL transduced were used as a constant 
source of this factor and appeared promising for targeting cancer cells 
[145,146].

Conclusion 
MSC offer the majority of stromal cell lineage including 

chondrocytes, osteoblasts and adipocytes. Additionally, they co-localise 
with HSC and LSC in the BM niche and influence their fate decision 
through mutual cross talk. The impact of MSC on the tumorogenesis 
could be attributed, in part, to their immune modulation behaviour 
and tendency for tumor tropism. This latter ability was exploited for 
deliverance of therapeutic genes to the tumour niche for targeting 
malignant cells. Clearly, MSC should be viewed as a double-edged 
weapon, hence, further researches are recommended to understand 
the complex interactions between tumor cells and the surrounding 
microenvironment.
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