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Introduction
In many types of hematologic malignancies and solid tumors, 

cancer stem cells (CSCs) represent small cell populations with 
capacities for self-renewal and differentiation [1]. Therapies targeting 
CSCs hold the promise of effective treatment of human cancer [2-4]. 
A successful anti-CSCs strategy should inhibit specific genes whose 
expression are required for the maintenance of CSCs [1]. The fact that 
many key genes are involved in both CSCs proliferation and normal 
stem cells regulation through various pathways such as Wnt/β-catenin 
[5], Hedgehog [6], Bim-1 [7,8], p53, p16INK4a and p19ARF [9], has made 
it more important to identify genes that are functionally required by 
CSCs but not by normal stem cell counterparts. 

Metabolic Genes in Cancer Stem Cells
Although cancer metabolism has long been thought to be equal 

to aerobic glycolysis, studies in the field in the past decade have 
strengthened the conclusion that not only aerobic glycolysis, but 
also other metabolic genes or pathway are important in supporting 
cancer cell growth and proliferation [10,11]. A couple of metabolic 
genes or pathways are specifically activated in human cancer cells and 
those metabolic genes or pathways are more functionally required by 
CSCs [1,3]. The major mechanisms of metabolic genes activation in 
CSCs include direct or indirect activation by onco-protein, recurrent 
mutation and amplification/overexpression (Figure 1). 

One class of metabolic genes or pathways is directly changed by 
cancer-initiating genetic changes such as acquiring an oncogene or 
accumulating a DNA mutation in CSCs. Those genetic changes may 
cause aberrant expression of these metabolic genes, which are required 
for self-renewal and differentiation of CSCs. Chronic myeloid leukemia 
(CML) is a good model to study CSCs as the BCR-ABL onco-protein
is the only difference between the CSCs and their normal stem cell
counterparts [12]. Using a BCR-ABL transduction/transplantation
CML mouse model, DNA microarray analysis was used to compare
gene expression between BCR-ABL-expressing and non-BCR-ABL-
expressing Lin-c-Kit+Sca-1+ cells. A couple metabolic genes were found
to be upregulated by BCR-ABL oncogene, and this upregulation cannot 
be reversed by BCR-ABL kinase inhibition [12]. Among those genes,
Arachidonate 5-lipoxygenase (Alox5) is a member of the lipoxygenase
family of enzymes and transforms essential fatty acids into leukotrienes 
[13]. Alox5 has been shown to be involved in numerous physiological
and pathological processes, including oxidative stress response,
inflammation, and cancer [13]. The expression of Alox5gene was
elevated by BCR-ABL. However, this elevation cannot be abolished
by imatinib treatment. The studies further showed that in the absence
of Alox5, BCR-ABL failed to induce CML in mice [12]. This Alox5
deficiency caused impairment of the function of leukemia stem
cells(LSCs) but not normal hematopoietic stem cells (HSCs) through

its effects on differentiation, cell division and survival of long-term 
LSCs (LT-LSCs), which consequently caused a depletion of LSCs and a 
failure of CML development [12]. 

Alox5 was also identified as a novel target in glioma stem-like 
cells (GSLCs) [14]. Nordy, an Alox5 inhibitor, was shown to be able 
to attenuate the growth of GSLCs in vitro. Inhibition of Alox5 reduced 
the GSLC pool through a decrease in the CD133+ population and 
abrogated clonogenicity [14]. Inhibition of Alox5 also appeared to 
exert its effect via astrocytic differentiation by upregulating GFAP 
and downregulating stemness related genes, rather than by inducing 
apoptosis of GSLCs [14]. 

A metabolic gene inactivated by BCR-ABL in LSCs from CML 
mouse model is stearoyl-CoA desaturase 1 (Scd1). Scd1 was down 
regulated by BCR-ABL onco-protein in LSCs and played a tumor-
suppressive role in LSCs but not in HSCs [15]. Deletion of Scd1caused 
acceleration of CML development and conversely overexpression 
of Scd1 delayed CML development in a CML mouse model [15]. 

Figure 1: A couple of metabolic genes or pathways are activated through direct 
or indirect activation by onco-protein, recurrently mutation and amplification/
overexpression.
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Although Pten, p53, and Bcl2 pathways were shown to be affected 
by SCD1 in LSCs, the mechanism of SCD1 regulating LSCs remains 
unclear [15]. These CSCs related pathways may be regulated by SCD1 
through its metabolic functions or other novel functions independent 
of its metabolic role. It will be important to dissect the function of 
SCD1 in LSCs.

The transcriptional regulatory properties of the oncogene Myc 
also regulated the expression of genes necessary for CSCs/cancer 
cells to engage in glutamine catabolism [16]. The Myc-dependent 
glutaminolysis adjusted the mitochondrial metabolism to glutamine 
catabolism to sustain cellular viability [16]. The stimulation of 
mitochondrial glutamine metabolism resulted in reduced glucose 
carbon entering the TCA cycle and a decreased contribution of glucose 
to the mitochondrial-dependent synthesis of phospholipids [16]. 
Similarly, the promyelocytic leukemia protein (PML) tumor-suppressor 
gene had a crucial role in the self-renewal of CSCs by controlling cell 
fate decisions [17]. PML acted as both a negative regulator of PPARγ 
co-activator 1A (PGC1A) acetylation and a potent activator of PPAR 
signaling and fatty acid oxidation [17,18].

The expression change of metabolic pathways was also observed in 
other types of CSCs.

The distinct metabolic properties change has been shown in breast 
CSCs in comparison to non-CSC cancer cells [19]. The metabolic 
analyses revealed that CSCs preferentially perform glycolysis over 
oxidative phosphorylation compared to non-CSCs [19]. In the 
lethal therapy-related myelodysplasia syndrome or acute myeloid 
leukemia (t-MDS/AML), the dysfunctions of the alanine and aspartate 
metabolism, glyoxylate and dicarboxylate metabolism, phenylalanine 
metabolism, citrate acid cycle, and aminoacyl-t-RNA biosynthesis 
were shown in blood stem cells, which may result in decreased ability 
to detoxify reactive oxygen species generated by chemo and radiation 
therapy, therefore leading to cancer-causing mutations [20].

The secondary class of metabolic genes is mutated in CSCs in 
different cancer types. Those mutations in metabolic enzymes may 
cause gain of function or loss of function. The normal function 
of isocitrate dehydrogenase-1 (IDH1) and IDH2 is to metabolize 
isocitrate and NADP+ to yield α-ketoglutarate (αKG) and NADPH 
[21,22]. Mutations in IDH1 and IDH2 have recently been identified 
in 20% of AML, as well as other malignancies including glioblastoma, 
chondrosarcoma, and prostate cancer [22,23]. These alterations are 
gain of function mutations because they drive the synthesis of the 
‘oncometabolite’ R-2-hydroxyglutarate (2HG). 2HG-producing IDH 
mutants prevent the histone demethylation that is required for lineage-
specific progenitor cells to differentiate into terminally differentiated 
cells [24]. Recently, the conditional knock-in mice in which the most 
common IDH1 mutation, IDH1 (R132H) showed increased numbers of 
early hematopoietic progenitors. These mice developed splenomegaly 
and anemia with extramedullary hematopoiesis [21]. Inhibition of 
IDH1 blocked glioma in differentiation and promotes tumor control 
[25,26]. Similarly, by using a transgenic mouse model that expresses 
the IDH2 (R140Q), mutant IDH2 was shown to contribute to AML 
initiation [27]. Targeted inhibition of mutant IDH2 resulted in reduced 
leukemia cell proliferation and induced differentiation of leukemic 
blasts in AML [27,28].

Another class of metabolic genes is amplified or overexpressed 
in CSCs. Phosphoglycerate dehydrogenase (PHDGH) catalyzes the 
first step of the serine biosynthetic pathway downstream of glycolysis, 

which is a metabolic gatekeeper both for macromolecular biosynthesis 
and serine-dependent DNA synthesis [29]. In primary breast tumors, 
PHGDH localizes to a genomic region of recurrent copy number gain 
and its protein levels are elevated in 70% of estrogen receptor (ER)-
negative breast cancers [30,31]. Suppression of PHGDH in PHGDH 
high-expression cancer cell lines caused a strong decrease in cell 
proliferation, as well as a reduction in serine synthesis [30,31]. Besides 
breast cancer, PHGDH is also amplified in human melanoma and 
PHGDH knockdown impairs proliferation of those melanoma cells 
and breast tumor initiation [30,31]. However, in the established human 
tumor, PHGDH depletion did not impair tumor maintenance or growth 
in vivo [32]. In addition to PHGDH, other glucose metabolic genes have 
also been shown important in tumor initiation. The glycolytic pyruvate 
kinase isoenzyme M2 (PKM2) determines the energy regeneration 
by converting glucose to lactate (active form, Warburg effect). It is 
strongly expressed in human cancers [33]. Overexpression of mutant 
PKM2 reduced glycolysis and led to decreased tumor initiation and 
growth [33]. However, PKM2 was also shown not to be necessary 
for tumor maintenance or growth in xenograft mouse models [34]. 
Another possible metabolic gene affecting CSCs is Hexokinase 2 
(HK2), which catalyzes the first committed step of glucose metabolism 
and is expressed at higher levels in cancer cells than is observed in 
normal adult tissues [35]. Using Hk2 conditional knockout mice, HK2 
was shown to be required for tumor initiation and maintenance in 
mouse models of lung cancer and breast cancer [35]. PHGDH, PKM2 
and HK2 were all observed to affect tumor initiation, suggesting that 
those genes may play an important and specific role in CSCs. 

The Strategy for Developing Anti-Metabolic Target 
Inhibitor

How to target those metabolic genes is a critical question in 
developing effective anti-tumor drugs to inhibit CSCs and human 
cancer. A couple of metabolic genes affect the CSCs through their 
metabolic function. Targeting their metabolic functions and inhibiting 
their metabolites will be necessary to block the self-renewal and 
induce the differentiation of CSCs. IDH1 and IDH2 mutants produce 
‘oncometabolite’ 2HG, which prevents the histone demethylation and 
blocks the differentiation of lineage-specific progenitor cells [24]. The 
inhibitors of IDH1 or IDH2 mutants reduced the levels of 2HG and 
induced cell differentiation [26,28]. Some metabolic genes such as 
SCD1, PHGDH, PKM2 and HK2 were shown to be important in CSCs 
or tumor initiation, but the detailed function roles of those metabolic 
genes in CSCs or human cancer are still not clear [15,32,34,35]. For 
example, the function of PHGDH in cancer cell setting is independent 
of its role in serine biosynthesis, instead this gene acts as a modulator 
of FOXM1 protein stability [36]. PKM2 recently was found playing 
a non-metabolic role in tumorigenicity by regulating β-catenin 
transactivation upon EGFR activation in cancer cells [33]. These results 
suggest that metabolic enzymes, like PHDGH and PKM2, might have 
a novel function independent of their roles in metabolism and more 
studies are needed to further understand the novel function of those 
metabolic genes in CSCs before developing the potent compounds to 
target those genes. 

As CSCs represent a very small population of cancer cells in cancer 
patients, choosing a suitable preclinical CSCs model will be important 
for testing the efficacy of those anti-metabolic target inhibitors.
Human cancer cell line, patient derived cancer cells, 3D cancer cell 
culture,cancer mouse model, cancer cell line xenograft mouse model 
and patient derived xenograft mouse model are commonly used 
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preclinical models to test the efficacy of anti-tumor drugs [37,38]. For 
those metabolic genes functioning in CSCs or associated with tumor 
initiation, the anti-tumor efficacy may not be observed in human cancer 
cell line or human cancer cell line xenograft mouse model [32,34]. 
Therefore, 3D cell culture, cancer mouse model and patient derived 
xenograft mouse model will be very helpful to estimate the efficacy 
of those metabolic target inhibitors in CSCs and human cancer. For 
example, 3D gel culture systems have been used to identify and study 
cell line-derived CSCs and their patterns of differentiation in vitro [39]. 
BCR-ABL transduction/ transplantation CML mouse is a good model 
to study the biology of CSCs of CML and test the effects of anti-tumor 
drugs on CSCs [12]. It is necessary to choose the “right” preclinical 
cancer model for different anti-metabolic target drugs.

The strategy for targeting CSCs
While accumulated experimental evidence have shown the 

presence of CSCs and their critical roles in cancer growth, metastasis, 
drug resistance and disease relapse, more efforts have been initiated to 
identify novel compounds to target CSCs and advance cancer treatment. 
Several anti-CSCs small molecule compounds including BBI-608 and 
VS-6063 are being investigated by clinical trials. BBI-608 blocked CSCs 
self-renewal and induced cell death in CSCs as well as non-stem cancer 
cells and showed a broad-spectrum anti-tumor and anti-metastatic 
activity in preclinical studies [40]. BBI-608 has entered a Phase III 
randomized study in patients with pretreated advanced colorectal 
cancer [40]. VS-6063, a small molecule FAK inhibitor preferentially 
targets CSCs and reduces tumor-initiating capacity, as FAK signaling 
has been shown to be important for the development and survival of 
CSCs [41]. Although those compounds showed certain encouraging 
and promising effects on CSC and tumor growth in preclinical studies 
and small-scale clinical trials, it is currently not known whether those 
compounds may eradicate the CSCs in cancer patients. 

As metabolic changes are crucial for the self-renewal and 
differentiation of CSCs, it may be a good strategy to combine the 
chemotherapy drugs, target therapy drugs, the potential anti-CSCs 
inhibitors and metabolic enzymes inhibitors together. Multiple 
metabolic targets inhibitors are being developed, such as IDH1/2 
inhibitor and PHGDH inhibitor. Recently, the first IDH1 inhibitor AG-
120 entered a Phase I clinic trial to evaluate its safety, pharmacokinetics, 
pharmacodynamics, and clinical activity in advanced hematologic 
malignancies that harbor an IDH1 mutation. Moreover, the effect of 
IDH1 inhibition in combination with current cancer drugs and other 
CSC inhibitors are expected to be investigated in the near future [42]. 
Intriguingly, AG-221, a novel, oral, potent IDH2 mutant inhibitor was 
just reported to be well tolerated and show promising initial clinical 
and pharmacodynamic activity in patients with relapsed and refractory 
IDH2 mutant hematologic malignancies [43].

The rational for the combination therapy is tumor cell heterogeneity 
and its implication for drug resistance, and the success of combination 
chemotherapy in the clinic [44]. In CML, BCR-ABL kinase inhibitor 
can kill myeloid leukemia cells but not the LSCs [45]. BCR-ABL kinase 
inhibitor combined with ALOX pathway inhibitor and other anti-
CSCs compounds may open up a new avenue for curing CML [12]. 
Similarly, in IDH2 mutant AML, chemotherapy drugs could rapidly 
kill most proliferated AML cells. IDH2 inhibitor combined with anti-
CSCs drug may kill AML CSCs and prevent the relapsed disease [43]. 
Those chemotherapy drugs, target therapy drugs, anti-CSCs drugs and 
anti-metabolic target drugs will give us multiple combination therapy 

strategies, which may provide the best choice to kill CSCs and cure 
human cancer (Figure 2).

Conclusion
Taken together, altered cell metabolism is considered an essential 

hallmark of cancer and many metabolic genes or pathways have been 
shown to be associated with tumor initiation and growth, metastasis 
and disease relapse [10]. Those metabolic genes are also linked to self-
renewal and differentiation of CSCs [12,21,27,34]. Inhibition of those 
metabolic pathways in combination with current cancer drugs or other 
anti-CSC inhibitors may provide a curative therapeutic strategy for 
cancer patients. 
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