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Introduction
The trends towards using green chemical and energy are 

increasing due to the growing demand for non-fossil bio-products, 
the environmental concern for using fossil fuel, and the continuously 
increasing cost of crude oils. The total annual markets of biofuels 
and biochemicals are estimated to exceed $1 trillion[1]. Microbial 
fermentation has been widely used to produce organic biochemicals 
and biofuels, including citric acid, lactic acid, butyric acid, propionic 
acid, amino acids, ethanol, propanol, butanol, etc. The rapidly growing 
biotechnology market requires an efficient bioprocess platform, 
including both the production cell and the process, for biochemicals 
and biofuels production. Metabolic engineering (ME) is often used 
to develop high-producing cells needed for the process. However, 
ME requires genetically modifying the cell, which can be difficult 
to do or to achieve the expected outcome, especially for less studied 
microorganisms. Metabolic process engineering (MPE) is a novel and 
advanced technology that alters or manipulates metabolic pathway 
to produce the interested metabolites by rationally controlling or 
manipulating bio-production process parameters. The goal of MPE 
is to achieve a high-productivity, high-quality, robust and scalable 
process through dynamic monitoring and investigating the interactions 
between cellular metabolism and process parameters. Different from 
the well-known traditional fermentation process development, MPE 
targets to engineer the bio-production process by controlling the 
cell physiology and metabolic responses to changes in fermentation 
process parameters and incorporating the interplay between cell 
and process into the rational process design. In this article, we focus 
on the application of MPE to improve biochemicals and biofuels 
production via precise bioreactor controllers, in situ sensors, and omics 
technologies. 

Fermentation can be disturbed by slight changes in some process 
parameters, which leads to variable product quality. The major process 
parameters in fermentation include bioreactor operation parameters 
and metabolic process parameters. The bioreactor operation parameters 
(e.g., agitation rate, temperature, pH and DO) can be controlled by 
precise bioreactor controllers and in situ probes, which have been well 
evaluated and developed in process development in the biotechnology 
industry. For example, a fuzzy-PI controller has been developed to 
maintain a precise temperature by controlling temperature variation 
within a narrow range in large scale ethanol production [2]. The 
mathematic modelling has been successfully developed to assess the 
dynamic behaviour of bio-butanol fermentation consisting of various 
interconnected units such as fermenter, cell retention system, and 
vacuum vessel[3].However, it is hard to directly regulate or manipulate 
metabolic process parameters (e.g., basal medium, substrate, feed rate 
and feed formulation) in fed-batch fermentation due to complicated 
and dynamically variable metabolic activities of microorganism. 

Fed-batch fermentation has been widely used in biochemical, 
biofuel and food industries. The optimal nutrient feeding strategy can 

main certain cell growth to support bio-production, avoid nutrient 
depletion to achieve high volumetric productivity, and minimize 
the accumulation of by-products. One challenge to optimize feeding 
strategy (e.g., feeding rate and feed formulation) is how to collect 
and analyse dynamic metabolic parameters, including biomass, 
extracellular metabolites (substrate, product, by-product, and other 
metabolite) and intracellular metabolites. Although HPLC, GC, MS and 
other analytical technologies have been applied to analyse substrates 
and products offline, the profiling of intracellular and extracellular 
metabolites (e.g. the interested intermediates and end metabolite in key 
metabolic pathway), varies in the course of time. Robust, fast response, 
precise and in situ probes can partially solve this issue by providing 
online sample analysis. Some sensors, including biomass probe, 
dissolved oxygen probe, extracellular oxidoreduction potential probe, 
and gas monitors, are used in fermentation to monitor cell growth, 
assess aerobic metabolism, estimate NAD+/NADH+ ratio, and measure 
gases (e.g., CO2, CH4 and H2), respectively[4].In addition, biochemical 
analysers connected to auto-samplers are used for online monitoring 
of multiple metabolites. Different from discrete sensors, the MS 
based chemical multisensory systems, named as electronic noses and 
electronic tongues [5], have been used in both qualitative recognition 
of multi-component media and quantitative analysis of component 
concentrations in wine production. With dynamic metabolite data 
collected using in situ probes and auto-samplers, mathematic modelling 
can be applied to achieve precise nutrients feed and harvest time in fed-
batch fermentation. For example, the maximum or dynamic substrate 
feed rate in aerobic fermentation has been determined by developing 
a feeding model that correlates substrate mass transfer and substrate 
uptake to volumetric oxygen transfer rate [6].

High-productivity fermentation processes have been developed 
using traditional bioreactor controller and metabolic process 
development tools. However, the rational design of a metabolically 
engineered fermentation process to achieve high-productivity, high-
quality, and high-robustness is far behind in the biotechnology 
industry. This is caused by the lack of a fundamental understanding 
of the interaction between cellular activities and fermentation 
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environment. The recent advances in omics technologies enable the 
fermentation process profiling, and thereby provides an in-depth 
understanding of genome background, global protein profiling, and 
metabolite map of bio-production. Omics studies usually refer to 
genomics, transcriptomics, proteomics, metabolomics and others. 1) 
Genomics is the comprehensive and complete analysis of genome using 
new-generation DNA sequencers such as Illumina Hi Seq 2000 or Life 
Tech SOLiD; 2) Transcriptomics is a functional genomics analysis by 
qualifying and quantitating messenger RNA using next-generation 
sequencing technologies; 3) Proteomics is to quantitate the expression 
of intracellular proteins under defined culture conditions using SELDI-
TOF-MS, UPLC-MS/MS and MALDI-TOF-MS; and4) Metabolomics 
is to identify and quantify a large number of cellular metabolites using 
LC-MS.

Omics have been recently used in the biotechnology industry to 
develop fundamental understanding of the phenotype in biobutanol 
and biochemical production. For example, transcriptomics has been 
used to analyse the response of Clostridium acetobutylicum ATCC 
824 to butanol stress, which generated a new medium formulation 
to maintain high cell growth and butanol production [7]. Another 
genome-wide transcriptional analysis with the next-generation 
sequencing technology has been performed to investigate the effect 
of butyrate supplement on butanol metabolic switch in C. beijerinckii 
NCIMB 8052 [8]. With the access and integration with genomics 
database and transcriptomics knowledge, it is feasible to identify 
metabolites, establish metabolic reactions, and reconstruct metabolic 
networks via metabolomics. The core metabolites responsible for 
carbon, energy and redox balance, amino acids, end product inhibition 
and cell growth under defined culture conditions or production 
processes can also be distinguished. 

Metabolomics is a powerful approach in MPE because it is 
capable of finding the regulatory mechanism of metabolic flux 
balance or regulation. Metabolic flux reveals the overall outcome of 
various cellular components, such as genes, transcripts, proteins, and 
metabolites, and interplayed factors, such as gene regulation, protein-
protein interaction, and metabolic network. Therefore, the metabolic 
flux analysis facilitated with metabolomics approach is the key to 
MPE. The increasing metabolic coverage and analytical resolution in 
metabolomics provides the direct evaluation of pathway intermediates. 
Multiple software tools (e.g., Open Flux and Fiat-Flux) are available 
and allow for user-friendly metabolic flux calculation by integrating 
experimental metabolomics data [9,10]. The metabolic network can 
be constructed using statistical analysis such as unsupervised learning, 
correlation network analysis, pattern recognition, principle component 
analysis, or dynamics control theory [11].

With the rapid advancement of systems biology, a large amount of 
metabolomics data has been accumulated and some well-known public 
metabolic pathway databases have been created, such as, MetaCyc, 
Kyoto Encyclopedia of Genes and Genomes (KEGG), Pathway 
Interaction Database (PID), Reactome and WikiPathway [12]. Some 
de novo models have been developed to facilitate data interpretation, 
but they rely on the literature mining and manual processing, so it is 
still challenging to extract key information from the big data[13]. To 
solve this issue, Buchel, et al. have established Path2Models database by 
including kinetic, logical, rule-based, multi-agent, constraint-based and 
statistical models [14]. The advantage of Path2Models database is that 
it can automatically generate mathematical model from pathway data 
sources, such as KEGG, Bio Carta, Meta Cyc and SABIO-RK. Various 

types of models have been developed based on the Path2Models and 
shared through Bio Modes Database and the Cell ML repository [11].In 
addition to these databases and models, computational systems biology 
modelling will be a good strategy to perform functional analysis and 
infer cellular network, which integrates various statistical frameworks 
and mathematical formulas [13]. 

With the continuing market growth for microorganism-based 
biochemicals and biofuels, it is of great interest for the biotechnology 
industry to rationally design effective bioprocesses. Rational design 
requires the accurate prediction of cell responses to changes in 
fermentation conditions. The rational process design empowered by 
omics technologies, especially transcriptomics and metabolomics, 
allows for investigating gene expression, developing metabolite 
profiling, distinguishing metabolic regulators, and identifying critical 
process parameters. Therefore, the integration of rational design 
with omics technologies in MPE can contribute to the development 
of metabolically engineered processes for industrial production of 
biochemicals and biofuels with high productivity and high product 
quality.

In summary, MPE is a powerful technology that integrates the 
well-developed process control techniques, such as precise bioreactor 
controllers and in situ sensors, and advanced omics technologies. MPE 
enables the rational design of a bio-production process, and thus can 
lead to a highly efficient fermentation process for biochemicals and 
biofuels production. MPE not only can contribute to the enhanced 
production of metabolites in fermentation but also can provide an in-
depth understanding of interplays between cells and the fermentation 
process. Current metabolic engineering approaches require 
genetically modifying the cell, which can be difficult to do for less 
studied microorganisms. MPE is easier to implement than metabolic 
engineering and should have broad applications in biotechnology for 
the production of chemicals, fuels, and pharmaceuticals. 
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