Reach Us +44 1704 335730
Metabolic Syndrome in Aging Heart: Molecular Insights | OMICS International
ISSN: 2167-0943
Journal of Metabolic Syndrome
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Metabolic Syndrome in Aging Heart: Molecular Insights

Julieta Díaz-Juárez1, Gustavo Pastelín1 and Jorge Suarez2*

1Department of Pharmacology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México

2Department of Medicine, University of California, San Diego, USA

*Corresponding Author:
Jorge Suarez
Department of Medicine, University of California
San Diego, USA
Tel: (858) 534-9931
Fax: (858) 534-9932
E-mail: [email protected]

Received date: July 27, 2017; Accepted date: August 04, 2017; Published date: August 12, 2017

Citation: Díaz-Juárez J, Pastelín G, Suarez J (2017) Metabolic Syndrome in Aging Heart: Molecular Insights. J Metabolic Synd 6:230. doi: 10.4172/2167-0943.1000230

Copyright: © 2017 Diaz-Juarez J, et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Metabolic Syndrome


Risk factors that define the metabolic syndrome (MetS) develop with age increasing its prevalence. Therefore, MetS can be considered an age-related health problem. Mechanism involved in aging and MetS are incompletely understood. The goal of this review is to highlight novel molecular maladaptive mechanism that tiger cardiac disease and common in aging and MetS. We focus on mitochondrial energetic function as well as mitochondrial calcium handling. In addition, we analyzed the role of O-GlcNAcylation which is a posttranslational modification that triggers multiple signaling pathways.


Aging; Heart; Metabolic syndrome; Molecular mechanisms; Mitochondrial calcium; O-GlcNAcylation


Metabolic syndrome (MetS) is an arrangement of cardiovascular and metabolic risk factors that dramatically increase cardiovascular mortality and morbidity and type 2 diabetes [1-3]. MetS is a growing public health problem worldwide. The magnitude of the prevalence of MetS also signals to the complexity of the problem.

MetS is characterized by central obesity, dyslipidemia, compromised fasting glucose, and hypertension [4]. However, the pathophysiologic mechanisms that lead to MetS are incompletely understood.

The prevalence of MetS increases with age with cardiovascular disease being the most frequent outcome. Therefore, MetS can be considered an age-related disease.

Only after decades of intense research efforts worldwide we have identified important molecular targets of the aging process that lead to cardiovascular disease. We only describe some novel discoveries at the molecular level that revealed new therapeutic targets that have not been investigated.

Aging and decreased cardiac function

The process of general aging-related changes in model organisms has been explored recently [5-7]. The rate of aging is a controlled process governed by epigenetic pathways and biochemical processes which are conserved in evolution [6]. Aging is generally characterized by progressively impaired organ function and an increased propensity to death. This process indeed occurs in the heart. Of special relevance is that aging causes dysregulation of nutrient sensing, with abnormal metabolism and mitochondrial (Mito) dysfunction [5-7]. Though some studies have suggested that Reactive Oxygen Species (ROS) production may be implicated in the aging process, the role of ROS as a primary cause of cellular senescence has also been questioned [6,8]. Beyond these general concepts, it is clear that humans older than 65 years have an increased propensity for heart failure (HF) (e.g. 11/1000 persons) and that HF is enhanced further with increased age (e.g. 43/1000 in humans >80 years old) [9,10]. MetS further worsen these data. This is relevant since HF is always associated with recurrent hospitalization, decreased quality of life and a reduction in life span [11].

Alterations contributing to aging-related decreases in cardiac and Mito energetic function

The heart is a highly active metabolic organ which is very rich in Mito [12] and therefore susceptible to decreased Mito energetic function. Several converging mechanisms contribute to decreased Mito function with aging, including decreased Mito biogenesis, decreased Mito quality and decreased energetic function of Mito normalized for Mito quantity [6,13,14]. Some reports find no significant changes [14] and others find decreases in the function of specific Mito complexes and increased ROS production [13,15].

Mito Ca2+ handling, [Ca2+] m and Mito energetic function

Mito free calcium concentration ([Ca2+]m) is an important signaling mechanism for Mito energetic activity by enhancing the activity of oxidative phosphorylation, especially complex III, and the Vmax of Complex V [16]. In addition, several dehydrogenases in the Mito matrix are activated by [Ca2+]m including the Pyruvate Dehydrogenase Complex (PDC) which is the key enzyme for glucose oxidation (GOX) [17]. There are limited findings reported regarding aging-related changes in substrate consumption. A positron emissionbased approach was used to show that myocardial glucose utilization could be stimulated by dobutamine, only in youn, but not old hearts [18]. Without an adequate compensatory increase in glucose utilization and GOX, a decrease in high-energy phosphate generation will prevail in the aging heart.

[Ca2+]m is controlled by a complex set of mechanisms influencing Mito matrix Ca2+ uptake and release which have been reviewed [19,20]. Briefly, the outer Mito membrane (OMM) is quite Ca2+- permeable [21], but import across the inner Mito membrane (IMM) is highly regulated. The most important contributor to Mito Ca2+ uptake is the mitochondrial calcium uniporter complex (MCUC) with the MCU serving as a highly selective channel that moves Ca2+ ions across the IMM dependent on Mito membrane potential (ΔΨm). Recently, integrative genomics methods enabled the discovery of the molecular nature of MCU, and its regulatory subunits, MCUb, MICU1 and 2, and EMRE [22-27]. MCU is an integral membrane protein with two transmembrane domains that forms the pore through which Mito Ca2+ currents are conducted across the IMM [22,23]. MCUb has been identified as a member of the oligmeric pore complex which reduces Mito channel activity [26]. MICU1 contains EF-hand Ca2+-binding domains and is found in the Mito inter-membrane space (IMS), where it serves as a Ca2+-sensing gatekeeper, keeping the channel closed when Ca2+ levels are low and allowing the channel to open in response to transient Ca2+ rises [28-30]. In addition MICU1 contributes to optimal coupling between cytosolic Ca2+ transients and activation of Mito-based Ca2+-responsive dehydrogenases [28]. EMRE is a 10 kDa protein proposed to be essential for the in vivo uniporter current and additionally bridges the Ca2+-sensing role of MICU1 and MICU2 with the Ca2+-conducting role of MCU [27].

Mito Ca2+ export is mediated by the Mito Na+/Ca2+ Exchanger (mNCX) and the Mito H+/Ca2+ Exchanger (mHCX) which have also been recently identified [31,32]. Short term opening of the Mito Permeability Transition Pore (MPTP) can also contribute to Mito Ca2+ release [33].

During the systolic and diastolic phase of a heartbeat, intermyofibrillar Mito (IFM) which are in close proximity to the sarcoplasmic reticulum (SR), are exposed to the changing levels of the cytosolic Ca2+ transient. The cardiac myocyte cytosolic calcium concentration ([Ca2+]I) increases from about 100nM during diastole, to about 500 nM in systole; however in the privileged micro-domain between the ryanodine receptor (RyR2) of the SR and the IFM, [Ca2+]I transiently rises to 10-20 μM during the systolic release phase of Ca2+ exiting the SR through the RyR2. Due to the relatively low affinity of MCU for Ca2+ the 20 to 40 fold higher [Ca2+]I levels, which persist for about 10ms during systole, are the most active time for Mito Ca2+ import by the MCUC [34]. The Mito Ca2+ transient follows the cytosolic Ca2+ transient with a slight delay, and a much smaller magnitude. Overall the Mito Ca2+ uptake accounts only for 1-2% of cytosolic Ca2+ extrusion [35,36]. The impact of Mito Ca2+ handling is therefore not so much linked to its contribution the cytosolic Ca2+ transients, but derives more from the importance of [Ca2+]m for Mito energetic function. The amount of Ca2+ that enters Mito via MCU or other mechanisms, must be extruded to an equal extent by Mito Ca2+ exporters like the mNCX [31]. Feedback loops exist that regulate increased Mito import and resultant increased Ca2+ release, so, as to potentially protect Mito against Ca2+ overload [37]. Excessive [Ca2+]m loading, as can occur with an acute ischemic event, can result in the opening of the MPTP complex with large amounts of Ca2+ released into the cytoplasm, ultimately leading to activation of cardiac myocyte death pathways [38].

Studies in mice with ubiquitous or CM-specific inducible deletions of MCU have generated interesting findings. Mice with a ubiquitous knock-out of MCU are viable and show decreased energetic efficiency and maximal performance of skeletal muscle [39]. Cardiac function was not evaluated in detail. Subsequent work with MCU KO mice generated in a C57BL/6 background showed mid-gestation lethality [40]. Recent reports indicate that β-adrenergic responsiveness [41] and the fight or flight response, is dependent on MCU activity [42]. Two recent reports using mice with conditional cardiac myocyte-specific deletion of MCU [43,44] found that MCU Ca2+ conductance activity matches energetic supply with cardiac workload during an acute stress mediated by β adrenergic stimulation [44]. It should be noted that the control mice and the mice with MCU deletion are in a normal “unstressed” physiological state, unless submitted to β adrenergic stimulation or a sprint exercise [43,44]. Old mice are known to be submitted to aging-related “stresses” including decreasing cardiac function and have difficulty responding to an increased demand for cardiac work [45]. This may lead to post-translational modifications of MCU or of other MCUC members impairing Mito Ca2+ conductance functions independent of acute β adrenergic stimulation. Other work has shown that post-translational modification of MCU by phosphorylation markedly enhances the Ca2+ conductance of MCU [46]. Using Tg mice with expression of a dominant negative form of MCU, no acute β adrenergic stimulus was needed for MCU to function as Mito Ca2+ importer [47]. A new report demonstrated that simulated hyperglycemia in cardiac myocytes reduces [Ca2+]m, and glucose oxidation with an increase in fatty acid oxidation [18]. Furthermore. Diaz-Juarez et al. demonstrated in the same report that restoring [Ca2+]m concentration to normal levels by genetically expressing MCU normalized glucose and fatty acid metabolism in spite of simulated hyperglycemia. These findings point out a possible pathophysiological role of MCUC in simulated ischemia.

Excessive O-GlcNAcylation of CM and Mito proteins and Mito energetic function

O-GlcNAcylation of serine or threonine residues of nuclear, cytoplasmic and Mito proteins is a dynamic and ubiquitous protein modification [48-50]. This process has emerged as a key regulator of critical biological functions including transcription and translational processes [51], and of Mito function [52], as was also shown by prior work [53]. Post-translational protein modifications by phosphorylation (O-P) and O-GlcNAc can have reciprocal effects on protein function and are mediated by different types of dynamic interplays. In addition, competitive and alternate modification of adjacent sites occurs as well as other interactions [49]. Overall modification of protein function by O-GlcNAc derives from the interplay between protein modification by O-P and O-GlcNAc.

The O-GlcNAc status of proteins is regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (GCA), which catalyze the addition and removal of O-GlcaNAc residues, respectively [54-58]. The overall catalytic activity of OGT is positively controlled by the concentration of its donor substrate UDP-GlcNAc, making it an excellent metabolic sensor. OGT is O-GlcNAcylated and tyrosinephosphorylated [49,56]. Recent evidence indicates that a shorter GCA splice variant, which has enzyme activity, occurs [59] and can be Mitodirected. Recently, several Mito proteins of the respiratory chain complex that undergo O-GlcNAcylation in the diabetic heart have been identified [53]. Interestingly, increased O-GlcNAcylation of cardiac proteins occurs in the aging heart [60].


It is currently unclear if the decrease in Mito energetic and metabolic function that occurs in the aging heart can be restored. Research is needed to explore this by using two novel interventions: 1) Rectifying [Ca2+]m through normalizing MCU levels and MCUC function, and 2) Reversing the excessive O-GlcNAcylation of cardiac myocytes and especially Mito proteins, including MCU. Currently no data are available in the literature for Mito Ca2+ handling, [Ca2+]m or MCUC levels in cardiac myocytes from aging heart. Increased OGlcNAcylation of cardiac myocyte proteins from aging heart has been reported [60], but no attempt has been made to reverse the excessive Mito protein O-GlcNAcylation of aging heart and determine if this can improve cardiac function in aging heart. Assuming that these questions can be answered, innovative therapeutic approaches for the declining function of the aging heart and its increased propensity to develop heart failure may result.


This Manuscript was supported by Grant from UC-MEXUS CONACYT (CN 15-1489).


Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 1041
  • [From(publication date):
    September-2017 - Dec 14, 2018]
  • Breakdown by view type
  • HTML page views : 965
  • PDF downloads : 76

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri and Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry


[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7