Metabolites-Mitochondria-Microglia (Mmma): Therapeutic Stategy for Treatment of Neural Inflammation and Neurodegeneration

Corrado Angelini* and Arianna Di Stadio

Description

We consider the modulation of mitochondrial metabolism to change polarization of the microglia state. Patients with mitochondrial disease often present with prominent neurologic symptoms; the alteration of mitochondrial metabolism produces an excess of ROS and cytokines that appeared implicated in the activation of microglia; similar considerations apply to Amyotrophic Latera Sclerosis (ALS) and other neurodegenerative disorders.

The microglia polarization by mitochondrial dismetabolism modulation could be considered a possible therapeutic target to treat the neuroinflammation and neurodegenerative disorders, similar to macrophage action in case of muscle inflammation and atrophy.

Since skeletal muscle, heart and brain are the tissues with the highest metabolism in the body, with a staggering 50-100-fold increase in oxygen consumption from rest to maximal exercise, myopathic symptoms in mitochondrial disease is a common presentation of the conditions. Myopathic symptoms can present as limb weakness, bulbar weakness with dysphagia, ptosis, external ophthalmoplegia, and exercise intolerance.

Reactive Oxygen Species also attack and denature a number of components within the mitochondria, including the protein components of the Electron Transfer Complex (ETC), membrane lipids (particularly cardiolipin), and mtDNA. In particular, the denaturing of cardiolipin has been associated with abnormal morphology of the inner mitochondrial membrane (IMM), less association of the ETC complexes within that membrane, a decline in activity of the ETC (ATP phosphorylation) and the release of cytochrome c which initiates apoptotic signaling.

Upon lipo-poly-saccharide (LPS) stimulation, macrophages in mice [1] change to a pro-inflammatory state, shifting ATP production from oxidative phosphorylation (OX-PHOS) to glycolysis pathway. This demonstrates that increased mitochondrial oxidation of succinate through succinate dehydrogenase (SDH) brings high mitochondrial potential and increases production of reactive oxygen species (ROS). Blocking ROS production with rotenone, a complex I inhibitor and uncoupling mitochondria, results in an inhibition of this macrophagic pro-inflammatory phenotype.

We might extrapolate consequences that apply to human diseases, for instance, it is interesting to note that dimethyl-fumarate, a cell penetrating fumarate ester, has been recently approved by FDA as a front-line drug for the treatment of relapsing-remitting multiple sclerosis [2], since it boosted both LPS induced IL-1beta production and TNFalpha production. It is well known that fumarate can stabilize hypoxia inducible factor (HIF-1alpha) and this is the likely mechanism by which it is induced IL-1beta.

Complex I can produce large amount of ROS by the regulated process of reverse electron transport when the CoQ pool is highly reduced. ROS signal is sensitive to uncoupling, achieved through an inhibitor of succinate oxidation, dimethyl-malonate [1]. The central role of mitochondria in immune signaling and in innate immune response fits the function of this organelle in cell death and signaling. Infact, the endosymbiotic origin of mitochondria may reflect not only the requirement of eukaryote to evolve their respiratory oxidation but also the idea that mitochondria might have a role as "signaling hubs", which can influence the phenotype of immune cells and possibly of other cell types (i.e. T and B lymphocytes and other circulating cells) to respond to infections, since succinate oxidation is an important regulator of signaling in inflammation, opens a great number of new therapeutic opportunities, since it can be also modulated by a series of metabolites such as dimetyl- malonate, itaconate [3], which modulate succinic dehydrogenase. Inhibitors of SDH might prove useful shifting microglia away from pro-inflammatory gene expression towards anti-inflammatory gene expression within an inflammatory environment.

We aim to cover the key-possibilities that are opened by these experimental observations in the neuromuscular disorders field, where the mechanism of inflammation is part of myositis, Amyotrophic Lateral Sclerosis (ALS) necrotizing autoimmune myopathy, muscular dystrophies, autoimmune neuropathy (both chronic and acute) [4]. Down-regulation of mitochondria might occur in common muscle diseases, such as muscle ischemia due to peripheral vascular diseases, "intensive care unit" weakness [4]. Another condition that has probably a role for mitochondria down-regulation is atrophy and cachexia of muscle, which corresponds to a fast atrophy of type 2 muscle fibres due to unknown factors released by tumours (such as pancreatic or stomach cancer). In this condition, muscle fibres loose OX-PHOS capacity, patients undergo fast muscle atrophy. Whether this is a metabolic effect that occurs for remote cancer effect or a paracrine myopathy, remains to be studied.

Metabolic reprogramming in macrophages/microglia has been recently observed; in particular authors identified that an altered mitochondrial metabolism can polarize microglia in its neuro degenerative phenotype (M1) [5,6]. Pro-inflammatory stimuli, such as LPS, cause microglage alternation and a switch away from oxidative phosphorylation towards glycolysis, similar to Warburg effect in tumour cells [7].

Succinate is a TCA-cycle intermediate and activates HIF-1alpha [8] which promotes inflammatory gene expression; on the contrary, endogenous itaconate regulates metabolic remodeling, succinate levels by inhibiting SDH and mitochondrial respiration in inflammatory response.

*Corresponding author: Corrado Angelini, Department of Neurology, San Camillo Hospital IRCCS, Via degli Alberoni 70 Venice, Italy, Tel: +39 041 220 7111; E-mail: corrado.angelini@unicod.it

Received January 20, 2018; Accepted January 30, 2018; Published February 02, 2018


Copyright: © 2018 Angelini C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
or at least by an increased ROS production are able to activate microglia
of ROS; then LPS, HIF1, SOD, indirectly by glutamate increasing (SLA),
encephalomyopathies, and at the same time increases the concentration
correlated with neurodegenerative condition and mitochondrial
the change in state of microglia in M1 pro-inflammatory phenotype, in
microglia in M1 and M2 phenotype.

Table 1: Characteristics of different classes of microglia.

<table>
<thead>
<tr>
<th>Name</th>
<th>Resting microglia</th>
<th>M1</th>
<th>M2</th>
<th>Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td>High</td>
<td>Low</td>
<td>Activated</td>
<td></td>
</tr>
<tr>
<td>OX-PHOS</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty acids oxidation</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Inflammatory cytokines</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Inflammatory cytokines</td>
<td>High</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M1 microglia: Pro-inflammatory and activated M2 microglia: Anti-inflammatory

macrophages. Figure 1 shows the characteristics of ROS activation of
microglia, denominated M1.

It has been recognized that macrophages switch as a potential
therapeutic target from M1 (pro- inflammatory macrophage) to M2
(anti-inflammatory macrophage) state. This can happen through
an action of drugs such as metformin, and rotenone (a complex I
inhibitor). While M1 macrophages metabolism features high i-NOS
expression and NO production, M2 macrophages have high levels of
oxidative phosphorylation and fatty acids oxidation.

Similar to macrophages, microglia assume different phenotype
(M1 and M2) in relation to metabolic state [6]. Microglia, as resident
innate immune cells in the brain, belongs to the macrophages family
but derives from vitellin sac, has long been implicated in the pathology
of neurodegenerative diseases. Under normal condition microglia
is present in staying state but, metabolic changes can activate it.
Two phenotypes of microglia have been identified the M1 form, the
aggressive phenotype, that induces neuro-degeneration by increasing
of pro-inflammatory cytokines and direct aggression versus neural cells
and the M2 form. M2 is the antagonist of M1 and it has a regenerative
and neuroprotective action. Table 1 summarizes the characteristic of
microglia in M1 and M2 phenotype.

Here we consider the effect of the mitochondrial metabolic shift
and ROS effect on the microglia state/phenotype, in particular on the
activation and increasing concentration of M1 phenotype.

We assume that mitochondrial overexpression of ROS might induce
the change in state of microglia in M1 pro-inflammatory phenotype, in
directly way or by inflammasomes modulation (Figure 1).

M1 phenotype activates different ILs (IL4, IL10) that have been
related with neurodegenerative condition and mitochondrial
encephalomyopathies, and at the same time increases the concentration
of ROS; then LPS, HIF1, SOD, indirectly by glutamate increasing (SLA),
or at least by an increased ROS production are able to activate microglia
from its staining state as happen in mitochondria myopathy. When the
inflammatory process is activated, the concentration of microglia M1
is self-sustained until an inversion of metabolism happens reducing the
production and concentration of ROS (Figure 1). Can this be exploited
therapeutically in chronic inflammatory states and neurodegenerative
disorders?

Here we consider that reprogramming macrophages and microglia
with tricarboxylic acid cycle (TCA) intermediate metabolites or
metabolic inhibitors might be a novel therapeutic avenue for the
 treatment of inflammatory and neurodegenerative conditions
(“MMM” strategy). Metabolites might shunt M1 macrophages and
microglia cells by changing from a metabolism similar to that described
in tumour cells with the Warburg effect [7], i.e. high glycolysis with
low aerobic metabolism, to utilization of fatty acids and production of
reactive oxygen species (ROS).

Mitochondrial derangement occurs frequently when immune-
mediated cells undergo a drastic metabolic change during an
inflammatory process. Infact, inflammation does not only produce
a response to infection or inflammation, but also a number of
metabolites and cytokines. This response occurs in neuromuscular
tissues, for instance, when in muscle increased macrophages are seen
in two possible autoimmune inflammatory disorders, i.e. inflammatory
myopathies, where macrophages destroy the muscle fibers in necrotizing
auto-immune myopathy. A similar reactive inflammation might be
seen in muscular dystrophies where macrophages might stimulate
muscle regeneration after necrosis. Microglia, as macrophages, might
stimulate neuro-regeneration when is active in M2 phenotype.

In several animal models, myotoxins are used to study regeneration
after the necrosis they induce: therefore, one can follow release by
macrophages of a series of metabolites and interleukins; Amato
[9] in the calpainopathy disease has demonstrated an eosinophilic
inflammation and active macrophages clusters might appear, where
increased ROS production is likely to occur.

After mitochondrial dysfunction, they are recruited to phago-
lysosomes and the production of nicotinamide-di-phosphate by the
pentose phosphate pathway occurs. NADPH is the electron donor for
NADPH oxidase, finally transferring electrons to molecular oxygen,
thus producing the superoxide ion, a potent ROS species. On the other
hand, activated macrophages (M2) generate ATP mainly through
oxidative phosphorylation. Pharmaceutical companies are highly
interested in the production of exogenous itaconic acid, which function
as an inhibitor of various enzymes including SDH. After metabolic
intervention, these compounds lead to accumulation of succinic acid,
fumaric acid. At present itaconic acid acts as a specific anti-microbial
metabolite that supports the cellular metabolic immune response, but
we have to explore if it has an important role in neuro-inflammation
and acts in addition to TCA-cycle intermediate and their endogenous
production [3].

Another clinical consequence of the influence of mitochondria
on microglia action and on B-, T- lymphocytes sub-populations is
that in mitochondrial disorders it is likely that common infections are
prevalent and dangerous. Mitochondrial disorders are a heterogeneous
group of diseases, that might be due to defects in ETC respiratory chain
or to a nuclear DNA mutation. Mitochondrial dysfunctions have a role
both in Parkinson syndrome, and ALS. For their treatment, drugs
combination composed of vitamins, cofactors and anti-oxidants are
used. If a susceptibility to infections and inflammatory state should
be present in mitochondrial patients, this would require further
therapeutic approaches, such as “MMM strategy”.

<table>
<thead>
<tr>
<th>Name</th>
<th>Resting microglia</th>
<th>M1</th>
<th>M2</th>
<th>Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td>High</td>
<td>Low</td>
<td>Activated</td>
<td></td>
</tr>
<tr>
<td>OX-PHOS</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCA</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty acids oxidation</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Inflammatory cytokines</td>
<td>Low</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro-Inflammatory cytokines</td>
<td>High</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M1 microglia: Pro-inflammatory and activated M2 microglia: Anti-inflammatory

Figure 1: Proposed mechanism of microglia activation by ROS induced in
ALS and mitochondrial myopathy.
Another relevant question is related to the exposure hypoxia exposure, especially in older individuals or in obese sedentary subjects with sarcopenia or in cachexia, due to the critically regulatory role of HIF-1alpha, which might show an abnormal response; on the contrary, high intensity exercise seems to reverse both the possible adverse factor of exposure to hypoxia [10,11] and in sarcopenia.

Due to the similarity between microglia and macrophages in state modification, handling mitochondrial metabolism in order to reduce the production of ROS could change the M1/M2 states, by increasing M2 protective/regenerative form. The microglia polarization by mitochondrial metabolism modulation could be considered an option to treat the neuroinflammation and neurodegenerative disorders, similar to macrophage action in case of muscle inflammation and atrophy. Furthermore, thanks to the availability of several biomarkers including mitochondrial microRNAs it should be possible to monitor metabolic state and microglia mitochondrial metabolic shift.

References