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Abstract
We report on the aerosol assisted chemical vapor deposition growth of either pure or gold-nanoparticle decorated 

tungsten oxide nanoneedles, directly integrated onto alumina transducers for achieving resistive gas sensors. The 
morphology of the different samples grown is studied by scanning electron microscopy and by atomic force microscopy. 
The performance of these nanomaterials for the detection of methanol, ethanol and acetone vapors at ppm levels is 
studied. It is found that the detection of these species is possible even in a background of nitrogen where oxygen is 
present at ppm levels only. The presence of Au nanoparticles on the surface of tungsten oxide nanoneedles significantly 
increases sensitivity towards the vapors considered. Additionally, Au loading enhances the kinetics of surface reactions 
and helps decreasing response time. The detection mechanism and the role of Au nanoparticles is discussed in light of 
the experimental findings.
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Introduction
 Volatile organic compounds (VOCs) including aromatics such 

as benzene or toluene, nitrogen oxides (NOx), hydrogen sulfide or 
ammonia are among the most dangerous pollutants released each year 
by anthropogenic sources. They have harmful effects both on human 
beings and animals [1-3]. The widespread detection and continuous 
monitoring of these organic pollutants require inexpensive, fast, 
sensitive, selective and stable sensor devices. In the last years, metal 
oxide nanowire materials (e.g., SnO2, WO3) have been studied for 
developing gas sensors with superior performance in sensitivity, 
power consumption and long-term stability [4-6]. Tungsten oxide 
nanoneedles represent a very promising material for gas detection 
[7]. The decoration of metal oxide nanoneedles with different metal 
nanoparticles helps increasing and tuning the sensitivity of the 
resulting nanomaterials towards gases or vapors. Various methods 
have been used to manufacture pure and metal nanoparticle decorated 
metal oxide nanoneedles, such as sol-gel [8,9], spray pyrolysis [10], 
spin-coating [11,12], electrodeposition [13,14], and the aerosol assisted 
chemical vapor deposition (AACVD) technique [15-19].

In this paper, we have developed two types of sensors based on 
tungsten oxide nanomaterials. While the first type employs pure 
tungsten oxide nanoneedles, the second is based on gold-nanoparticle 
decorated tungsten oxide nanoneedles. The growth of the pure or Au-
decorated nanoneedles was performed, in a single step, by AACVD 
method directly onto platinum interdigitated electrodes, which had 
been printed previously onto alumina substrates. The morphology 
of the nanostructures grown was investigated by scanning electron 
microscopy (SEM) and by atomic force microscopy (AFM). An 
impedance spectroscopy measurement technique was employed 
to characterize the different sensors in the presence of vapors of 
methanol, ethanol and acetone in a balance of nitrogen. The loading 
of tungsten oxide nanoneedles with gold nanoparticles significantly 
changes response intensity and sensitivity towards the vapors tested 
and a discussion on the sensing mechanism is given in light of the 
experimental findings.

Materials and Methods
Sensor substrate and AACVD deposition

The AACVD process is quite simple, it consists of delivering the 
appropriate precursors in the form of an aerosol into the reaction zone 
in which the substrate is held [20,21].

In this paper, either pure or gold-nanoparticle decorated tungsten 
oxide nanonneedles were grown by AACVD onto alumina substrates 
in view of obtaining resistive gas sensors. Substrates consisted of 
alumina tiles (0.8×0.8 cm2) in which interdigitated platinum electrodes 
(electrode gap was 500 microns) and a resistive platinum heater 
had been screen-printed onto the front and back sides of the tile, 
respectively [21].

The precursor solutions were prepared as follows. For growing 
pure tungsten oxide nanoneedles, 50 mg of tungsten hexacarbonyl 
(W(CO)6) (Sigma-Aldrich) were dissolved in a mixture of 15 ml of 
acetone (Sigma-Aldrich) and 5 ml of methanol (Sigma-Aldrich). For 
the growth of Au-decorated tungsten oxide nanoneedles 50 mg of 
W(CO)6 (Sigma-Aldrich) were dissolved in 15 ml of acetone (Sigma-
Aldrich), 7 mg of tetrachloroauric acid trihydrate (HAuCl4•3H2O) were 
dissolved in 6 ml of methanol and subsequently added to the tungsten 
oxide precursor solution. Prior to run the AACVD process, alumina 
substrates with screen-printed Pt electrodes and heater were cleaned 
with ethanol and then with acetone. The temperature of the reactor was 
set to 500ºC and to 380ºC for growing pure tungsten oxide nanoneedles 
and Au-decorated tungsten oxide nanoneedles, respectively. An 
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ultrasonic humidifier bath was used to create an aerosol from the 
precursor solutions kept in a glass flask. The aerosols were transported 
to the substrate, which was placed in the reactor stainless steel chamber, 
by using a carrier gas (N2) with a flow rate of 0.5 L/min. The deposition 
time ranged between 40 to 50 minutes, until all the precursor passed 
through the reactor chamber [22,23]. After deposition, an annealing 
step of the films was carried in an oven at 500ºC for 3 h under a constant 
200 ml/min flow of dry air [24]. After that, the substrates mounted to a 
PCB support using platinum wires and a silver soldering paste. Figure 
1a shows two of the sensors produced ready for being tested.

Morphology of the gas-sensitive films

The morphology of the deposited films was examined using 
Environmental Scanning Electron Microscopy (ESEM–FEI Quanta 
600, 20 keV) [16,17,23]. Atomic Force Microscopy (AFM) images were 
obtained using an MFP-3D Origin AFM set-up (Oxford Instrument, 
USA) in air. The images were obtained using tapping mode with 
standard cantilever holder equipped by an AC240TS silicon tip with 
a resonance frequency of ≈70 KHz. The scan was carried using a 
scanning rate of 0.5 Hz.

Gas sensing measurements

Electrical measurements for studying the gas sensing properties of 
the two nanomaterials towards different concentrations of methanol, 
ethanol and acetone vapors were performed using an HP 4192A 
impedance analyzer. Since all devices showed a resistive behavior at 
frequencies below 100 kHz, for all the measurements performed a fixed 
operating frequency of 1 kHz was selected [25,26]. This allowed us to 
monitor sensor response (i.e., resistance change) in real time. A bottle 
of dry nitrogen connected to two mass flow meters and a thermo-
stated bubbler were used to generate reproducible concentrations of 
the different volatile compounds tested. This system was connected to 
a stainless-steel sensor chamber (35 cm3 in volume), which could host two 
sensors. More details on this set-up can be found in references [26,27].

The variation of the resistance of the two sensors in the presence of 
different concentrations of the volatile species in a balance of nitrogen was 
studied. The sensor response is defined as the normalized resistance:

( ) 0

0 0

R RR % 100
R R

−∆
= × 				                      (1)

Where R the resistance is measured under a given vapor, and R0 is 
the sensor baseline resistance under nitrogen.

Results and Discussion
Morphological characterization of the sensing films

Electron scanning microscopy: The cristalline order of pure 
and Au-decorated tungsten oxide nanoneedles grown by AACVD 
was studied in previous works [23,24,28]. Figure 1 shows the film 
morphology observed by SEM for pure and Au-decorated tungsten 
oxide nanoneedles grown by AACVD. A film consists of high density 
wire-like structures. SEM images show the presence of randomly 
oriented nanoneedles, which is in good agreement with our previously 
reported results [16,23,24].

In a previous work [28], the sample analysis using energy dispersive 
X-ray analysis (EDX) shows the presence of tungsten and oxygen 
with an atomic percentage of 16.73 and 57.52 respectively. However, 
EDX analysis confirms the presence of gold with a percentage of 
0.88 at %. These results confirm the successful co-deposition of 
metal nanoparticles and tungsten oxide nanoneedles in a single step 
employing AA-CVD.

Atomic force microscopy: Figures 2 and 3 shows the film 
morphology observed with atomic force microscopy of pure and Au-
decorated tungsten oxide nanoneedles. It shows vertical nanoneedles 
deposited homogenously in micrometer scale (2.5 x 2.5 μm) and some 
of them inclined.These nanoneedles have perfect sharp tips with a small 
roughness value. A roughness of 121 nm and 108 nm for WO3 and gold 
nanoparticle decorated WO3 nanoneedles was obtained, respectively.

According to SEM results, the diameters of nanoneedles range 
between 80 and 120 nm. According to a horizontal section (AFM 
analysis), the diameter of nanoneedles is about 100 nm.

Gas sensing analysis

To find the optimal operation temperature for the two types of 
nanomaterials, sensor response versus operating temperature at a fixed 
concentration of methanol, ethanol and acetone was studied (Figure 
4). Figure 5 shows the responses of both tungsten oxide nanoneedles 

 
Figure 1: Sensors ready for testing after deposition of nanoneedles by AACVD 
and wire-bonding to a PCB (right) and ESEM micrographs of pure tungsten 
oxide (a) and Au-decorated tungsten oxide (b) nanoneedles.

Figure 2: Topography AFM image of tungsten oxide nanoneedles.
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and gold nanoparticle decorated tungsten oxide nanoneedles towards a 
fixed ethanol concentration of 5 ppm when the sensors were operated 
at different temperatures. A higher response for the two types of sensors 
is reached when the operation temperature is 250ºC. The optimal 
operating temperature of the sensor is related mainly to the formation 
of appropriate oxygen surface species, but also to the adsorption and 
further reaction of reducing species with oxygen adsorbates.

The two types of sensors were exposed to different concentrations of 
ethanol, methanol and acetone vapors at 250ºC. Figures 6 and 7 shows 
the sensor responses to different concentrations of vapors for pure and 
Au-decorated tungsten oxide nanoneedles, repectively. The decrease 
in resistance observed can be explained by the nature of the vapors 
injected, which are oxidizing vapors and by tungsten oxide behaving as 
an n-type semiconductor material [2]. Although the response signals 
are clear, regaining the baseline when the sensor surface is cleaned is 
somewhat difficult. Indeed, in some cases, a noisy baseline resistance is 
achieved (Figures 6 and 7). This can be explained by the fact that the 
balance gas employed is nitrogen and not air. Under these conditions 
and given the experimental set-up employed, only traces of oxygen 
(tens of ppm) may be present in the test chamber, especially during the 
cleaning phase.

Figure 8 shows calibration curves for the two types of sensors and 
the different vapors measured. The sensitivity of the tungsten oxide 

nanoneedle sensors (i.e., the slope of the curves) is higher for methanol 
than to the others vapors (Table 1). The improvement in sensitivity 
that results from the Au loading of tungsten oxide nanoneedles is 
similar for the alcohols (about 37% increase) and higher for acetone 
(about 67% increase). The detection mechanism for reducing species 
involves the adsorption of these volatile compounds on the surface 
of the semiconductor and further reaction with oxygen adsorbates, 
which eventually results in electrons that are initially trapped at 
oxygen adsorbates being released to the conduction band of the 
semiconductor. This mechanism, which is largely accepted to explain 
the detection of reducing species in a balance of dry air, has been shown 
to hold also when oxygen is present at concentration levels that range 
between few tens to few hundreds of ppm [29,30]. The use of metal 
nanoparticles and, in particular Au on the surface of tungsten oxide 
films has been shown to be advantageous for enhancing sensitivity 
towards some target species. Metal nanoparticles that decorate the 
surface of semiconductor metal oxides can improve their gas sensing 
properties by increasing the number of appropriate oxygen surface 
species or by catalytically decomposing the target species generating 
more reactive species that in turn spill over the surface of the metal 
oxide. Although there is not enough data to univocally determine 
which of the two aforementioned mechanisms is dominant here, the 
fact that the improvement in sensitivity is similar for the alcohols and 
acetone suggests that the role of Au nanoparticles may be to increase 
the number of appropriate oxygen adsorbates, thus increasing the 
number of active reactive sites for the detection of the different reducing 
vapors measured. Additionally, the loading with Au nanoparticles has 
also an effect in response dynamics (by increasing the kinetics of surface 
reactions). The response time of Au-tungsten oxide nanoneedle sensors to 
the different vapors tested is significantly lower than that of pure tungsten 
oxide nanoneedle sensors (Table 2).

Figure 3: Topography AFM image of gold-nanoparticle decorated tungsten 
oxide nanoneedles.
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Figure 5: Esponse of tungsten oxide nanoneedles (a) and Au-nanoparticle 
decorated tungsten oxide nanoneedles (b) towards ethanol 5 ppm at different 
operation temperatures.

Ethanol Methanol Acetone
Tungsten oxide 
nanoneedles 0.8 %. ppm-1 1.94 %. ppm-1 0.68 %. ppm-1

Au nanoparticle 
decorated tungsten 
oxide nanoneedles

1.1 %. ppm-1 2.65 %. ppm-1 1.14 %. ppm-1

Table 1: Sensor sensitivity (slope of calibration curves) to the different vapors tested.
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Figure 6: Sensor responses of tungsten oxide nanoneedles to various concentrations of (a) ethanol, (b) methanol and (c) acetone, at an operating temperature of 250°C.

Conclusión
In this paper, the AACVD technique was implemented as a simple 

and effective method for the deposition of tungsten oxide nanoneedles 
onto interdigitated electrodes printed on alumina substrates. Two 
different types of sensors based on pure tungsten oxide nanoneedles 
and on Au nanoparticle-decorated tungsten oxide nanoneedles 
were fabricated and tested. The sensors were operated at the optimal 
temperature of 250°C for detecting vapors of methanol, ethanol and 

acetone at units of ppm levels in a balance of nitrogen. The response 
intensity and the sensitivity of Au-decorated WO3 nanoneedle sensors 
were found to be higher than those of pure WO3 nanoneedles for 
the different volatiles tested. This has been initially attributed to Au 
nanoparticles increasing the number of appropriate oxygen species 
adsorbed on the surface of tungsten oxide nanoneedles, which increases 
the number of available reaction sites for the different reducing volatile 
species tested. In a future work, and in view to enhance selectivity 
and discrimination ability of tungsten oxide nanoneedles, specific 
molecules could be covalently immobilized to gold nanoparticles (e.g. 
after thiol functionalisation), which would help tuning their response 
to gases/vapors.
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Ethanol Methanol Acetone
Tungsten oxide 
nanoneedles 60 48 72

Au nanoparticle 
decoratedtungsten 
oxide nanoneedles

48 30 60

Table 2: Sensor response times (s) to the different vapors tested.
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Figure 7: Sensor responses of Au-nanoparticle decorated tungsten oxide nanoneedles to various concentrations of (a) ethanol, (b) methanol and (c) acetone, at 
an operating temperature of 250°C. 
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Figure 8: Calibration curves for (a) tungsten oxide nanoneedles (b) Au-nanoparticle decorated tungsten oxide nanoneedles to the different volatile compounds tested.
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