Methicillin-resistant *Staphylococcus aureus* (MRSA)

Mona Z Zaghloul

Microbiology Unit, Department of Clinical Pathology, Ain Shams University Hospitals, Cairo, Egypt

Corresponding author: Zaghloul MZ, Microbiology Unit, Department of Clinical Pathology, Ain Shams University Hospitals, Cairo, Egypt, Tel: 02-24023494; E-mail: monazaki_810@hotmail.com

Rec date: Apr 07, 2016; **Acc date:** Apr 08, 2016; **Pub date:** Apr 16, 2016

Copyright: © 2016 Zaghloul MZ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Zaghloul MZ (2016) Methicillin-resistant *Staphylococcus aureus* (MRSA). J Med Microb Diagn 5: e131. doi:10.4172/2161-0703.1000e131

Editorial

Methicillin-resistant *Staphylococcus aureus* (MRSA) infections have become a global health problem particularly in hospital setup causing simple skin infections to life-threatening infections. It may lead to serious complications, such as pneumonia, septicemia, arthritis and osteomyelitis [1].

MRSA was isolated from pus, urine, breast discharge, blood culture, cerebrospinal fluid, and ascetic fluid [2]. The extensive use of antibiotics over the last 50 years has led to the emergence of bacterial resistance and to the dissemination of resistance genes among pathogenic organisms [3]. In addition, since few cells in a population might actually express resistance, these heterogeneous strains can evade detection in standard susceptibility test systems [4,5].

During the 1980s, MRSA started to constitute a wide spread human health concern [6] besides its importance as a nosocomial pathogen [7-9].

MRSA is primarily mediated by the over production of penicillin-binding protein 2a (PBP2a) with low affinity for beta-lactam antibiotics [10]. The meca gene is part of a 21 kb to 60 kb staphylococcal chromosome cassette mec (SCCmec), a mobile genetic element that may also contain genetic structures as Tn554, PUB110, and pT181 which encode resistance to non-β-lactam antibiotics [11]. The meca gene which encodes PBP2a is considered a useful molecular marker of putative methicillin resistance in *S. aureus*. *S. aureus* strains have a tendency to accumulate additional resistance determinants, resulting in the formation of multiple-antibiotic resistant MRSA strains which are creating therapeutic problems and limiting the choice of therapeutic options [12].

Accurate and rapid identification of MRSA is essential for effective antimicrobial chemotherapy. Numerous approaches that improve turnaround time for the identification of MRSA have been described such as: fluorescence tests [13], PCR assays [14], or penicillin-binding protein 2a (PBP2a) antibody agglutination tests [15]. Molecular methods for detecting resistance valuable infection-control tools by rapid and accurate identification of Staphylococci and their resistant types. Thus help in confirming patients infected by resistant bacteria. Clearly rapid detection of a specific resistance mechanism in a molecular test would allow clinicians initially to avoid potentially inappropriate treatment options [16]. In recent years, detection of meca by PCR is considered the gold standard for identification of MRSA [17].

References

2. Green-top Guideline No.64h-The Royal College of Obstetricians and Gynecologists. Bacterial sepsis following pregnancy, April 2012.

Journal of Medical Microbiology & Diagnosis

ISSN: 2161-0703 JMMD, an Open Access journal

Volume 5 Issue 2 1000e131

http://dx.doi.org/10.4172/2161-0703.1000e131