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Abstract
Contaminant removal may largely be a function of many microbial processes in constructed wetlands. However, 

the role of microbial diversity for the removal of swine waste in constructed wetlands is limited. Here, we used 454/
GS-FLX pyrosequencing to assess archaeal, bacterial, and fungal composition within a surface flow constructed 
wetland to determine their spatial dynamics and contaminant removal within the wetland. We analyzed our data using 
UniFrac and principal coordinate analysis (PCoA) to compare community structure and specific functional groups of 
bacteria, archaea, and fungi in different sections of the wetland. PCoA analysis showed that, bacterial, archaeal, and 
fungal composition were significantly different (p=0.001) for the influent compared to the final effluent. Our results 
showed that, the wetland system contained relatively higher proportions of bacteria and fungi than archaea. Most 
of the bacteria and archaea that were associated with nitrogen removal were affiliated with Nitrosomonas which are 
ammonia oxidizing bacteria (AOB), Candidatus Solibacter, an anaerobic ammonia oxidizing bacteria (Anammox), 
as well as Nitrosopumilus, ammonia oxidizing archaea (AOA). The detection of AOB, Anammox, and AOA in this 
wetland shows abundance and diversity of these microorganisms that are responsible for nitrification processes in 
constructed wetlands.

Keywords: Constructed wetland; Contaminants; Pyrosequencing;
Microbial communities; Swine; Wastewater

Introduction
Constructed wetland (CW) is a natural process for the treatment of 

waste from a variety of sources [1-3]. They are cost-effective, ecologically-
friendly, and a simple alternative to conventional technologies for 
wastewater treatment [3,4]. It has also been shown that, significant 
benefits to human populations in both [2] developed and developing 
countries can be achieved through constructed wetlands, and these 
benefits may include water-quality improvement, water reclamation, 
conservation of habitat for species, flood control, recreational and 
educational activities [1,4-7]. North Carolina is one of the largest 
swine producing states in the United States [2], and waste disposal was 
traditionally done by flushing into anaerobic lagoons and then later 
sprayed on agricultural fields. This resulted in swine waste from large 
swine farms polluting surface and well waters [8]. During hurricane 
Floyd in 1999 many North Carolina hog waste lagoons overflew [2] 
and polluted many surface water systems with fecal indicator bacteria 
from compromised septic and municipal sewage systems, and livestock 
waste lagoons [8]. After the storm, North Carolina invested resources 
[2] into new, cost-effective technologies for waste disposal, and one
such technology was constructed wetlands for the treatment of swine
waste. As a result, a pilot constructed wetland for the treatment of swine 
waste was evaluated at [2] North Carolina Agricultural and Technical
State University (Greensboro NC, USA). The wetland system uses [2]
natural plants for the removal of nitrogen (N), phosphorus (P), solids,
and Chemical Oxygen Demand (COD) from treated swine wastewater,
resulting in a cleaning final effluent [9].

The removal efficiency by constructed wetlands has been shown 
to be a function of diverse microbial communities [10]. However, 
there is a general lack of information on the diversity and changes 
of the microbial communities in long-term constructed wetlands 
treating swine waste [2]. Work on bacterial diversity in constructed 
wetlands is well documented, whereas the role played by archaea and 

fungi is not clear. The main contaminants from swine waste [2] may 
include nutrients, salts, microbes, including pharmaceutically active 
compounds, and their removal involves complex physical, chemical, 
and biological processes [2]. The aim of the current study was to 
compare the composition of microbial communities in a continuous 
surface flow constructed wetland used for the treatment of swine waste 
using pyrosequencing.

Materials and Methods
Experimental site and sampling

The experiment was conducted at a swine research facility at 
North Carolina Agricultural and Technical State University farm in 
Greensboro, NC, USA. This was a continuous flow constructed wetland 
originally built in March 1996 [11] (Figure 1), and planted with Typha 
latifolia L. (broadleaf cattail) and Schoenoplectus americanus (Pers-
American bulrush). The wetland has six cells and each cell is 40 m long 
and 11 m wide. In 2003, a modification was made to cells 5 and 6 [11] to 
achieve a continuous marsh system with a slope of 0.33% (Figure 1). The 
new sections were planted with giant bulrushes (Scirpus californicus) as 
previously noted [11]. Sixty-five to 115 pigs were managed in the swine 
house between January 2007 and January 2012. Samples were collected 
from eight different points from different sections of the wetland in 
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duplicate in November 2012. Grab samples were collected sequentially 
from effluent from the swine house, lagoon 1, lagoon 2, and the 8,000 
L storage tank. More samples were collected from continuous wetland 
cell influent, final effluent samples, storage pond, and the final recycled 
effluent. The wetland cell received 10 kg/ha/day with a hydraulic load of 
3.8 m3/day. Samples were stored on ice and taken to the laboratory for 
further analysis. All samples were analyzed for ammonium (NH+

4-N), 
nitrate (NO3-N), total-phosphate (TP) and available-phosphate 
(PO4

3-) using a flow injection analysis instrument (Lachat-QuikChem 
8000, Loveland, CO, USA), as well as carbon (C) and nitrogen (N) 
concentrations using the Perkin-Elmer 2400, CHNS/O series II 
Analyzer (Shelton, CT, USA) [4].

DNA extraction and Pyrosequencing

Total bacterial DNA was extracted from effluent samples using 
Power Water DNA kits (MO BIO, Inc., Solana Beach, CA), according 
to the manufacturers’ protocol. DNA extracts from duplicate samples 
(200 ng) were pooled. Extracted DNA (2μL) was quantified using the 
NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 
Wilmington DE), and run on a 1.0% agarose gel before it was used for 
pyrosequencing. DNA was stored at -20° C prior to pyrosequencing 
analysis. The DNA samples (15.0 μl) were then submitted to Research 
and Testing Laboratories (Lubbock, TX) for polymerase chain 
reaction (PCR) optimization and pyrosequencing analysis. Bacterial 
tag-encoded FLX amplicon pyrosequencing was conducted on the 
16S rRNA gene for amplification of bacteria and archaea sequences, 
whereas the microbial tag-encoded FLX amplicon was used for 
amplification of 18S rRNA gene sequences in fungi. Pyrosequencing 
(TEFAP) procedures described earlier [12] based on 16S rRNA 
genes for archaea (V3-V5 regions) and bacteria (V1-V3 regions) 
with primer pairs, 340F90 (GYGCASCAGKCGMGAAW)/806R96 
(GGACATCVSGGGTATCTAAT) and 28F

( G A G T T T G A T C N T G G C T C A G ) / 5 1 9 R 
(GTNTTACNGCGGCKGCTG), respectively, were
employed. The fungal 18S rRNA gene was amplified using 
the primer pair, SSUF (TGGAGGGCAAGTCTGGTG)/
funSSUR(TCGGCATAGTTTATGGTTAAG). Pyrosequencing data 
were analyzed using the dist. seqs function in MOTHUR, version 
1.9.1 [13]. Raw reads were treated as previous described [14] using the 
Pyrosequencing Pipeline Initial Process of the Ribosomal Database 
Project (RDP), to sort the data, trim off the adapters, barcodes and 
primers using the default parameters, and to remove ambiguous ‘N' 
[15]. Sequence libraries were further resampled to obtain similar 
numbers of sequences for diversity and richness estimations [16]. All 
sequence reads with a quality score 20 and a read length 200 bp were 
removed. Shannon's diversity index values (H'), and Chao estimates 
were calculated from MOTHUR as well as operational taxonomic 
units (OTUs, 97% similarity). We used RDP Classifier with a bootstrap 
cutoff of 80% for taxonomic classification of the bacterial sequences. 
We used the keep first 200 bp commands in MOTHUR to eliminate 
sequencing noise resulting in a sequence read fragment covering the 
18S region and aligned to the SILVA database for further analysis of 
data as stated above.

Statistics and analysis of pyrosequencing data

SAS version 9.1 [17] was used to conduct analysis of variance 
(ANOVA) to determine differences in wetland properties. PCoA and 
UniFrac analysis were carried out using MOTHUR to group microbial 
communities of different samples into different taxonomic groups 
using the RDP Classifier. RDP Complete Linkage Clustering was also 

used to generate OTUs and weighted UniFrac from all samples [18]. 
The relaxed neighbor-joining algorithm in Clearcut (version 1.0.9) [19] 
was used for the construction of phylogenetic trees and the parsimony 
test (P-values of 0.05) in Treeclimber [20] was used for between-site 
comparisons.

Results
Nutrient removal

There were significant decreases (P<0.05) in total N, ammonium 
(NH4

+), and total suspended solids (TS) in wetlands from the lagoon 
to the final effluent (Figure 2). The removal rates of N and NH4

+ in this 
study were above 70% from the influent to the effluent and this was 
similar to what had been previously reported [9,21]. The removal rate 
of total and organic phosphorus was low between the lagoon and the 
effluent samples. The removal rates of total and suspended solids were 
significantly higher (P<0.01) between lagoon and the final effluent [18].

Community composition, diversity, and estimated richness

A total of 6354, 81234, and 50719 sequence tags for archaea, bacteria, 
and fungi, respectively, were generated through 454 pyrosequencing 
(Tables 1-3). The total numbers of OTUs were 661, 8429, and 1946 
for archaea, bacteria, and fungi, respectively (Table S1-S3). For the 
archaea, the highest number of sequences was found in storage pond 
while the lowest was in the final effluent (Table 1). For bacterial the 
highest sequence tag was from lagoon while the lowest was from mid 
marsh (Table 2). Furthermore, for fungi, the highest sequence tag was 
found in samples collected from storage pond and the lowest from mid 
marsh (Table 3). We normalized our data to the smallest sequence tag, 
for reanalysis to show normal distribution of variances (Table S1-S3). 
Shannon diversity index (H′) showed variations in diversity among 
the different wetland segments with the highest archaeal and fungal 

Figure 1: Wetland cells 40 m long 11 m wide constructed in 1995. Each cell 
consisted of 11 m by 10 m marsh at both influent and effluent and 11 m by 
20 m pond section separating the marshes and planted with Typha latifolia 
L. (broadleaf cattail) and Scirpus americanus (bulrush) in March 1996. The 
marsh and pond sections of wetlands have previously been described [2,4].
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ammonia oxidizing archaea (AOA), were detected in this section of the 
wetland in relatively low numbers. The detection of both Anammox 
and AOA was not surprising since both are known to perform major 
functions in major water columns [22].

Spatial phylogenetic structure of microbial community from 
different segments of the wetland

We applied PCoA (Figure 3), and the UPGMA hierarchical 
clustering analysis (data not shown) to determine the distribution 
of microbial phylogenetic similarities and sorted them into different 
groups by applying UniFrac distance matrix using the UniFrac 
web interface in MOTHUR. The pattern for archaeal community 
dynamics was different from that of bacteria (Figure 3A). An archaeal 
sample from the swine house and lagoons clustered to the right, 
whereas, samples from storage tanks, wetland cells effluent, mid 
marsh effluent, and the final effluent for land application clustered 
to the left. These segments clustered closer to each other, which was 
the opposite for bacteria. As stated earlier, these four segments have 
already gone through the wetland lagoons and wetland cells, where 
most of the biological interactions with complex communities are 
occurring for the degradation of major compounds from the swine 
house waste (Figure 1). Bacterial community structures from wetland 
samples collected from the swine house and lagoons 1and 2 were 
significantly different (p<0.0001) based on parsimony tests (Figure 

diversity in the continuous flow effluent, while the highest bacterial 
diversity was from manure influent to the lagoon 1.

From our pyrosequencing data, the majority of archaeal 
sequences belonged to the phyla, Euryarchaeota (88.7%) and 
Crenarchaeota (5.21%), and at the class level Methanomicrobia 
(42.1%), Thermoplasmata (26.25%), and Methanobacteria (17.35%) 
were dominant (Table 4). Bacterial sequences primarily comprised of 
the phyla, Proteobacteria (36.58%), Bacteroidetes (18.15%), Firmicutes 
(11.86%) (Table 5). The most abundant fungal phylum was the 
Basidiomycota (86.3%) (Table 6).

Using the greengenes database, we identified potential sequences 
at the genus level for specific functional groups of microorganisms 
that could perform specific functions in constructed wetlands (Table 
7). These sequences were mainly from bacteria and archaea. We had 
a relatively low abundance of Nitrosomonas, which are ammonia 
oxidizing bacteria (AMO) in the midsection of the wetland. However, 
high sequences of a carbon degrader (CD) Roseburia were detected 
in this section of the wetland. Flavobacterium, Rhodobacter, Thauera, 
and Methylophilus are all denitrifying bacteria (DN), and as expected 
were found in relatively high abundance in this section of the wetland. 
Hydrogenophaga (hydrogen oxidizing bacteria) was also found in 
relatively high abundance. Candidatus Solibacter, an anaerobic 
ammonia oxidizing bacterium (Anammox), and Nitrosopumilus, an 

Group nseqs OTUs chao invsimpson npshannon simpson coverage
S1 630 51 132.2 5.333953 2.361805 0.187478 0.953968
S2 952 111 354.83333 7.096459 3.043943 0.140915 0.919118
S3 619 92 202.5 16.108388 3.530358 0.062079 0.915994
S4 3318 171 381 3.398484 2.161431 0.294249 0.968354
S5 257 76 130.66667 16.472709 3.830253 0.060706 0.840467
S6 280 89 149.05556 33.759723 4.180865 0.029621 0.832143
S7 163 41 167.5 11.094958 3.192706 0.090131 0.858896
S8 135 30 48.2 7.97619 2.842945 0.125373 0.896296

Table 1: Total sequence tags for archaea generated from pyrosequencing from the wetland land units.

Group nseqs OTUs chao invsimpson npshannon simpson coverage
S1 9201 751 1440.81 14.230392 4.141051 0.070272 0.953918
S2 11967 1683 3677 22.425723 5.147448 0.044592 0.916688
S3 12385 1233 2765.64 7.080288 4.102311 0.141237 0.940654
S4 10181 1222 2585.45 19.936472 4.683588 0.050159 0.927414
S5 6934 1268 2907.43 20.243401 5.272591 0.049399 0.88852
S6 10800 1758 3380.38 64.356874 6.053123 0.015538 0.914907
S7 10795 822 1809.5 25.159356 4.438501 0.039747 0.955998
S8 8971 1719 3653.54 87.078426 6.120541 0.011484 0.890313

Table 2: Total sequence tags for bacteria generated from pyrosequencing from the wetland land units.

Group nseqs OTUs chao invsimpson npshannon simpson coverage

S1 10340 135 345.789474 2.212453 1.255139 0.451987 0.991296

S2 8814 102 224.0625 1.167906 0.52713 0.856234 0.992852

S3 6987 556 1186.123457 27.501675 4.283528 0.036361 0.954201

S4 1761 180 390.416667 11.555549 3.552191 0.086539 0.942646

S5 4609 472 947.561644 12.476529 4.024419 0.08015 0.942721

S6 5554 201 439.214286 3.572661 2.243241 0.279903 0.979114

S7 9204 117 289.117647 1.770473 1.058795 0.564821 0.991634

S8 3450 183 414.875 5.192079 2.690632 0.192601 0.969275

Table 3: Total sequence tags for fungi generated from pyrosequencing from the wetland land units.
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3B) as wetland compounds were strong structural factors influencing 
bacterial assemblages (R2=0.63, p=0.0024). The PCoA (Figure 3B) 
showed samples from swine house and lagoons clustering to the left 
while samples from storage tanks, wetland cells effluent, mid marsh 
effluent, and the final effluent for land application clustered to the right. 
Furthermore, bacterial community structures from these four segments 
of the wetland were significantly different based on the parsimony test 
(p<0.001), and this was confirmed by hierarchical clustering analysis 
(data not shown) with Jackknife supporting values. In general, the 
pattern of separations found in bacteria was also observed with fungal 
community structures in the different wetland segments.

Discussion
We employed 454 pyrosequencing techniques to quantify 

archaea, bacteria, and fungi community structures in a continuous 
flow constructed wetland. One major advantage of pyrosequencing is 
high-throughput and a large dataset of sequences, which can identify 
many microorganisms in a single analysis. As shown in this study, 
and from our previous study with bacteria [3], 16S rDNA sequences 
from different segments of the wetland may be used to determine 
the efficiency of the constructed wetland. This approach can monitor 
changes of microbial communities as waste flows through the wetland 
and has high potential for improving water quality based on bacterial 
concentrations. However, this technique does not quantify the members 
in the community in terms of cell number in the water samples, nor does 
it imply viability of the organism, but may demonstrate the presence of 
potential DNA sequences as shown in our previous study [23]. Here, we 
showed the diversity of microbial communities in relation to nutrient 
content in different sections of the constructed wetland fed with 
anaerobic lagoon swine wastewater. It has also been reported that, the 
bulk of the water quality improvement in constructed wetlands is due to 
microbial activities [1,2,24]. Archaeal, bacterial, and fungal OTUs from 
the influent were higher than from the effluent of the wetland. These 
results were associated with nutrient content differences in the different 
segments of the wetland where the concentrations of TN, NH4

-, TP and 
PO4

3- decreased from lagoon to the final effluent (Figure 2). The results 
can be partly explained by the decrease in nitrogen and phosphorous, 
which are essential nutrients for microbial growth. This is different 
from the research results reported by Ipsilantis and Sylvia [25], where 
microbial counts did not consistently increase under elevated nutrient 
conditions due to carbon limitation. Nitrogen removal in wetlands has 
been documented to be the result of microbial activities, which play 
roles in the pathways of Anammox [26] and nitrification-denitrification 
[27]. In addition, P removal may partially depend on microbial activities 
via mineralization [26,28] and immobilization.

We used pyrosequencing in this study to investigate the microbial 
diversity in the wetlands system because changes in environmental 
variables will likely have some influence on changes in OTUs. Archaea 
from storage tank samples displayed the highest species richness, 
diversity and evenness than samples from other segments of the 
wetland while results from the final effluent showed the lowest number 
of sequences; OTUs, and other diversity indices (Table 1). However, 
for bacteria and fungi, the highest diversity came from samples from 
wetland effluent, which has gone through the continuous marsh section 
of the wetland. The abundance, richness, and diversity of bacterial and 
fungal communities were considerably higher than archaea in a majority 
of the wetland cells (Table 2 and 3). This was similar to wetlands planted 
with Vetiveria zizanioides or Juncus effusus L. that showed much higher 
bacterial abundance but lower archaeal abundance [29]. In our study 
bacteria and fungi outnumbered archaea in all the wetland cells.
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Figure 2: Nutrient removal in wetland samples collected in duplicated.

Figure 3: The distribution of microbial phylogenetic similarity sorted into 
different groups by applying principal coordinates analysis (PCoA) spatially. 
All data were subjected to a matrix of UniFrac distances using the UniFrac web 
interface in MOTHUR.

Results from PCoA analysis confirmed that, TN, NH4
-, TP and PO4

3-

, were strongly correlated with the distribution of microbial species on 
which NH4

- , TP and PO4
3- concentrations had significant effects. These 

results suggested that, high levels of nutrient status promoted diversity 
and distribution of microbial species within the community. It has also 
been shown that, shifts in the structure of bacterial communities can 
be associated with changes in a number of soil properties including 
soil texture and soil nitrogen availability [30,31]. On the other hand, 
Calheiros et al. [32] reported that, bacterial diversity in constructed 
wetland may be a significant driver influencing the final effluent quality. 
Ogier et al. [33] and Dubernet et al. [34] reported that, the difference in 
the relative abundance of community members may affect the detection 
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of certain species due to competition during PCR. However, there 
may well be some species whose presence was obscured because they 
were not detected by pyrosequencing. Our study showed that, when 
wetland samples were analyzed spatially, community structures from 
wetland samples associated with the swine house and lagoons 1 and 
2 were significantly different (P<0.0001) based on parsimony test of 
UniFrac data (Figure 3A) from storage tanks, wetland cells effluent, 
storage pond, and the final effluent. Microbial communities in wetland 
cells are highly responsive to perturbation, dissolved organic matter 
concentration, and chemical stress, among others [35-38].

Pyrosequencing data showed high levels of Bacillus which is one 
of the largest Eubacteria found in soil. Some bacilli are phosphate 
solubilizing and are capable of surviving in extreme conditions due 
to their ability to form spores. Han and Lee [39] reported that, the 
inoculation of certain species of Bacillus may increase soil P availability. 
The high concentration of P in swine wastewater will limit the 
assimilative capacity of wetland soil and the presence of such bacteria in 
our constructed wetlands for swine wastewater treatment could impair 
the capabilities of P nutrient removal. A high relative abundance of 
potential denitrifying bacteria, Flavobacterium, was detected in mid-
section of the wetland. Flavobacterium associated with this wetland had 
been shown to be closely related to nitrifying bacteria [2]. However, 
these authors noted that even though these bacteria demonstrated 
phylogenic similarity, it does not mean that they have denitrifying 
potential. Therefore, the existence of denitrifying bacteria may be a 
contributing factor to the decreasing trend of nitrogen concentration 
from the influent to the effluent end in our wetland.

Another important pathway for the removal of nitrogen from 
this wetland is through the Anammox process. During this process, 
ammonium and nitrite are converted to dinitrogen gas [40]. Our 
research findings suggested the existence of Anammox bacterial 
sequences, Candidatus Solibacter, and this bacterium is a strict 
anaerobic autotroph. It is also known for its extremely slow growth 
resulting in limited applications [41]. Partial-nitrification with 
Anammox in constructed wetlands with higher removal efficiency of 
total nitrogen than conventional methods has also been reported [42], 

thus confirming the role of these group of bacteria in water quality 
improvements in constructed wetlands. It is possible that Anammox 
bacteria played a role in nitrogen removal in our wetland. It has been 
reported that Anammox uses carbon dioxide as its carbon source to 
produce biomass (CH2O0.5N0.15) and nitrite as electron acceptor for 
ammonium oxidation, and electron donor for the reduction of carbon 
dioxide [40]. In our study, we identify six OTUs of Candidatus Solibacter, 
whose sequences were 100% similar to Candidatus Solibacter from 
different sections of our wetland. This wetland has a high concentration 
of ammonium and nitrite, and as mentioned above [40], the Anammox 
bacteria require both ammonium and nitrite, which can be found at 
or near the aerobic–anaerobic interface of sediments and water bodies 
to function efficiently. Our samples were collected in the continuous 
flow section of the wetland which provides the most ideal region for 
the enrichment of Anammox. In constructed wetlands, ammonium 
diffuses upwards and meets the oxygen that is diffusing downwards, 
and create aerobe-anaerobe zone for most of the microbial activities 
associated aerobic bacteria or crenarchaeal ammonium oxidizers. In 
our study, about 5.1% of archaea were Crenarchaeota (Table 4). We 
also detected by pyrosequencing Nitrosopumilus which is a major 
ammonia oxidizing archaea [22,29,43]. These authors have shown that 
both bacteria and archaea communities can play important roles in 
biogeochemical processes in constructed wetland system.

In conclusion, the different sections of the wetland had different 
nutrient status reflecting different bacterial communities and 
diversities, permitting different bacteria to play important roles in 
nutrient removal within the wetland. The removal rates of N and NH4

+ 
in this study were above 70% from the influent to the effluent and this 
signifies the important roles of different microbial groups, played in 
contaminant removal. Most important, is the improvement of water 
quality from the final effluent since this water could be spread on the 
pasture. Therefore, the removal of the main pollutants from the swine 
wastewater would have a beneficial effect on the ground and surface 
water and in most of the swine producing regions of the world. This 
project is an innovative model for waste management for the swine 
industry and other confined-animal facilities.

Taxon Total S1 S2 S3 S4 S5 S6 S7 S8

Archaea 100 100 100 100 100 100 100 100 100

Crenarchaeota 1.2 0.16 0 0.16 1.45 1.97 2.5 1.84 8.15

Euryarchaeota 97.64 99.84 100 99.68 98.01 94.49 92.14 90.18 78.52

pMC2A384 0.08 0 0 0 0.09 0 0 0.61 0.74

unclassified archaea 1.09 0 0 0.16 0.45 3.54 5.36 7.36 12.59

Full sequence percentages of archaea classes

Taxon Total A.MU A.SW A.LA A.MI A.MM A.ME A.SP A.FE

C2 1.01 0 0 0.16 1.33 1.97 1.79 1.84 4.44

Methanobacteria 15.62 62.38 20.59 22.46 2.53 18.9 18.57 33.13 19.26

Methanomicrobia 59.34 0 3.36 25.04 93.64 65.35 54.29 52.76 52.59

pMC2A209 0.02 0 0 0 0.03 0 0 0 0

Thaumarchaeota 0.16 0.16 0 0 0.09 0 0.71 0 2.96

Thermoplasmata 22.3 37.46 76.05 52.02 1.84 4.72 17.86 4.29 2.96

unclassified archaea 1.09 0 0 0.16 0.45 3.54 5.36 7.36 12.59

unclassified Crenarchaeota 0.02 0 0 0 0 0 0 0 0.74

unclassified euryarchaeota 0.38 0 0 0.16 0 5.51 1.43 0 3.7

unclassified pMC2A384 0.08 0 0 0 0.09 0 0 0.61 0.74

Table 4: Full sequence percentages of archaea at the phylum and class levels.
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Taxon Total S1 S2 S3 S4 S5 S6 S7 S8
Acidobacteria 0.07 0.08 0 0.06 0.04 0.5 0 0.02 0
Actinobacteria 1.31 2 0.39 3.21 1.05 0.74 0.08 2.43 0.12

Armatimonadetes 0.01 0.01 0 0 0.09 0.03 0 0 0
Bacteroidetes 18.15 10.02 14.08 10.38 11.14 18.23 28.73 17.01 39.15

Chlorobi 0.02 0 0 0.03 0.09 0 0 0 0
Chloroflexi 0.13 0.07 0.08 0.24 0.39 0.23 0 0.01 0

Deferribacteres 0 0 0 0 0 0 0 0 0.01
Fibrobacteres 0.05 0 0.03 0 0 0 0.3 0 0.09

Firmicutes 11.86 0.22 8.44 0.6 1.97 0.42 47.56 0.29 34.89
Fusobacteria 0.01 0 0.04 0 0 0 0 0 0.04

Gemmatimonadetes 0.02 0.02 0.01 0.01 0 0.12 0 0.01 0
Lentisphaerae 0.01 0 0.03 0.01 0.02 0 0 0 0.01

OD1 0 0 0 0.01 0 0 0 0.01 0
Planctomycetes 0.01 0.02 0 0.01 0.02 0.06 0 0.02 0
Proteobacteria 36.58 27.39 58.49 60.1 66.36 29.59 1.19 29.13 7.44
Spirochaetes 0.54 0 0.79 0.05 0.12 0.09 2.17 0 0.94

SR1 0 0 0.01 0 0 0 0 0 0
Tenericutes 0.12 0 0.43 0.15 0.06 0.03 0.02 0 0.18

TM7 0.06 0.11 0 0.06 0.04 0.06 0 0.19 0
unclassified bacteria 30.33 57.98 17.13 24.24 18.38 47.59 19.94 49.95 17.13

Verrucomicrobia 0.73 2.09 0.04 0.86 0.24 2.32 0.01 0.94 0
Total 100 100 100 100 100 100 100 100 100

Table 5: Full sequence percentages of bacteria at the phylum level.

Taxon Total S1 S2 S3 S4 S5 S6 S7 S8

Basidiomycota 87.26 97.26 92.58 76.48 81.03 85.98 89.09 95.56 45.36

unclassified fungi 12.74 2.74 7.42 23.52 18.97 14.02 10.91 4.44 54.64

Full taxonomy RDP by order

Total F.FE F.LA F.ME F.MI F.MM F.MU F.SP F.SW

Agaricomycetes 85.84 96.87 91.89 70.92 80.18 83.9 88.13 95.3 44.09

unclassified basidiomycota 1.43 0.4 0.69 5.57 0.85 2.08 0.95 0.26 1.28

unclassified fungi 12.74 2.74 7.42 23.52 18.97 14.02 10.91 4.44 54.64

Full taxonomy RDP by family

Total F.FE F.LA F.ME F.MI F.MM F.MU F.SP F.SW

Agaricales 83.74 96.66 90.89 60.46 78.48 81.58 87.95 94.99 42.7

unclassified Agaricomycetes 2.1 0.2 1 10.46 1.7 2.32 0.18 0.3 1.39

unclassified basidiomycota 1.43 0.4 0.69 5.57 0.85 2.08 0.95 0.26 1.28

unclassified fungi 12.74 2.74 7.42 23.52 18.97 14.02 10.91 4.44 54.64

Full taxonomy RDP by genus

Total F.FE F.LA F.ME F.MI F.MM F.MU F.SP F.SW

Pleurotaceae 81.84 95.66 90.67 51.94 75.41 80.17 87.94 93.67 42.55

unclassified Agaricales 1.9 1.01 0.22 8.52 3.07 1.41 0.02 1.33 0.14

unclassified Agaricomycetes 2.1 0.2 1 10.46 1.7 2.32 0.18 0.3 1.39

unclassified basidiomycota 1.43 0.4 0.69 5.57 0.85 2.08 0.95 0.26 1.28

unclassified fungi 12.74 2.74 7.42 23.52 18.97 14.02 10.91 4.44 54.64

Full taxonomy RDP by species

Total F.FE F.LA F.ME F.MI F.MM F.MU F.SP F.SW

Hohenbuehelia 81.84 95.66 90.67 51.94 75.41 80.17 87.94 93.67 42.55

unclassified Agaricales 1.9 1.01 0.22 8.52 3.07 1.41 0.02 1.33 0.14

unclassified Agaricomycetes 2.1 0.2 1 10.46 1.7 2.32 0.18 0.3 1.39

unclassified basidiomycota 1.43 0.4 0.69 5.57 0.85 2.08 0.95 0.26 1.28

unclassified fungi 12.74 2.74 7.42 23.52 18.97 14.02 10.91 4.44 54.64

Table 6: Full sequence percentages of some dominant Fungi from phylum to species.
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AOB Nitrosomonas 11

CD Roseburia 124

DN Flavobacterium 1626

DN Rhodobacter 28

DN Thauera 57

DN Methylophilus 3

HOB Hydrogenophaga 7116

anammox CandidatusSolibacter 6

AOA Nitrosopumilus 4

AOB- ammonia oxidizing bacteria, CD- carbon degrader, DN- denitrifying bacteria, 
HOB-hydrogen oxidizing bacteria, anammox- anaerobic ammonia oxidizing 
bacterium, AOA- ammonia oxidizing archaea. 
Table 7: Bacteria and archaea with potential contribution for removal of 
contaminants from constructed wetlands.
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