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Abstract
Due to criticality of gradients in both chemical and biological fields, generating stable and controllable gradient 

concentration in microfluidics has significance such as analysis of cell migration, cancer metastasis, drug screening, 
chemotaxis and chemical synthesis. Integrated microfluidic chips are particularly amenable to gradient generation. 
Microfluidic chips functioning as concentration gradient have made great progress based on various principles. Diverse 
advanced microfluidic platforms have been developed as convection mixing-based gradient generators, laminar flow 
diffusion-based gradient generators, static diffusion-based gradient generator and geometric metering mixing-based 
gradient generator. In this review, we discuss recent advances and wide application of microfluidic gradient generators. 
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Introduction
Microfluidics is the science and technology of systems that process 

or manipulate small amounts of fluids, using channels with dimensions 
of tens to hundreds of micrometers. By manipulating the fluids and 
samples in the micro-channels, the individual operating units are 
interconnected to achieve specific experimental functions in the 
fields of biology, medicine, chemistry and the like. Microfluidics can 
achieve a variety of flexible operation of the unit and high throughput 
integration, such as cell culture, labeling, sorting and cracking, etc., and 
therefore it is also known as "lab on a chip". 

Recently, microfluidics has been widely employed in many fields, 
due to following advantages. (i) Microfluidic channels are in the scale 
of several micrometers matching the scale of a cell, (ii) environment 
of a microfluidic multidimensional channel network is relatively 
independent. (iii) Mass transfer and heat transfer are fast in the micro-
scale- microfluidic channels. (iv) Microfluidics can satisfy requirements 
of high-throughput analysis. (v) The multiple operational units of 
microfluidic platform can be combined flexibly, and have power to 
process a large number of tests in parallel. Microfluidic devices have 
been utilized in chemical and biological areas for generating gradient 
concentration. Traditional methods to generate concentration gradient 
in solution utilize pipet tip or reservoir in a gel were labour-some and 
limited [1]. Moreover, spatial resolution of concentration gradient 
generated by traditional methods is in the scale of several millimeters 
and difficult to control the gradient. In a sense, this gradient is not 
suitable for many analytical assays. Therefore, it is urgent to generate 
controllable and micro-scale concentration gradients [2]. 

 Concentration gradient in life body determines various cell 
behaviors, such as inflammation [3], wound healing [4], cell growth, 
differentiation [5-7] and cancer metastasis [8]. One of the goals of in 
vitro cell models is to recapitulate tissue organization and cell signaling 
occurring in vivo in order to establish a research platform that is more 
physiologically relevant or higher throughput [9-11]. Concentration 
gradients in this context as cell secreted signals that are prevalent, and 
they diffuse into extracellular environment until they are removed by 
flows from vessels or degraded by enzyme. Many cellular processes 
have evolved to identify direction information encoded in gradients. 
For example, biomolecular concentration gradients have been involved 
in tumor-cell invasion in metastatic cancer [12,13]. Migration and 
differentiation of tumor cells is mainly determined by repellant or 
attractant factors. Chemotaxis of tumor cells has become a crucial issue 

in screening of cancer drugs, and its research has been promoted by the 
gradient generator for a period of time [14-16].

 Using microfluidics to generate concentration gradient has 
many advantages in biological and chemical analysis. Among them 
utilizing microfluidic concentration gradient generator to generate 
gradients of compositions in solutions is the most popular. Gradient 
of compositions in solution has great usage in cell biology including 
cell growth and differentiation [17-28], axon guidance [29-32], 
neutrophil chemo-taxis [33-35], cell migration [36-39], cancer chemo-
taxis [40], bacteria growth and chemo-taxis [41-44], cytotoxicity [45-
54], optimization of reaction conditions [55] and bio-fabrication of 
chitosan membranes [56]. Microfluidic gradient generators have been 
developed such as convection mixing-based gradient generators [57-
100], laminar flow diffusion-based gradient generators [101-119], 
static diffusion-based gradient generator [120-139] and geometric 
metering mixing-based gradient generator [140-145]. In addition 
to generate gradients of compositions in solutions [68,71,74,75,77-
79,83,84,87,92,94,95,98,115,116,119,125,127-129,132-134,136,143-
147], microfluidic gradient generators can produce gradients of 
physical-chemistry on surface [59,66,70,88,89,97,117,130,148-151], 
gradients of shear stress [152], and gradients of refractive index in 
solutions [153]. 

 Most reviews on microfluidic gradient platforms are focused on 
biological application of drug screening, and limited emphasis on 
various gradient systems applied in optical systems. Here we described 
recent advances in the design and application of microfluidic gradient 
generators not only in the biological studies, but also about the optical 
systems.

Methods Applied in Microfluidic Gradient Generator
Microfluidic gradient generators can be classified into four 
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categories according to their gradient generating principles: convection 
mixing-based gradient generator, laminar flow diffusion-based gradient 
generators, static diffusion-based gradient generator and geometric 
metering mixing-based gradient generator. The convection mixing-
based gradient generators consisted of a network of micro-channels 
with multiple branching points. Gradient generation in this network 
of micro-channels produced via convection mixing, where the fluid 
streams encountered repetition of splitting, mixing, and recombination. 
Microfluidic gradient generators can generate gradient distributions of 
biochemical molecules by controlling advective and diffusive transport 
processes in the microscale. The laminar flow diffusion-based gradient 
generator works by combining two streams of liquid at a junction into a 
main channel, and allowed to diffuse when they flow downstream neck 
to neck. After some fixed distances, a gradient has been produced that is 
perpendicular to the flow field. T﻿﻿he static diffusion-based microfluidic 
gradient generator established gradient without convective flows in 
the channel by diffusing a reagent through a section with high fluidic 
resistance. The gradient generating mechanism of the geometric 
metering mixing-based gradient generator is simply that the geometry 
of micro-channels with the same flow rate determines the total 
amount of flow into the wells. And then, different ratios of buffer and 
reagent mixed to generate a gradient profile. The gradient generator is 
turned out to be a good platform for research in biology that reduced 
interference due to shear stresses. 

Convection mixing-based microfluidic gradient generator

The most common convection mixing-based gradient generator 
is the Christmas tree or Tree-like Gradient Generator design firstly 
reported by Jeon et al. in 2000 as show in Figure 1a. Jeon and co-workers 
established a hydrofluoric acid [HF] gradient to etch a glass slide. They 
characterized gradient generation by analyzing depth proportional to 
HF concentration gradient [1]. The gradient generator was composed 
of a network of vertical and horizontal micro-channels with many 
junction points. In this network of micro-channels gradient generation 
through convection mixing, which the fluid streams encountered 
repetition of splitting, mixing, and recombination. The reagent fluid and 

the buffer fluid from two side inlets mixing at the junction point. After 
completely mixing, the recombination stream spilt into both sides of 
the horizontal channel. Through several repetitions of splitting, mixing, 
and recombination, different concentrations of the reagent of interest 
will be generated in different fluid streams. This design of the gradient 
generator is dominated by successive dilutions and diffusional mixing of 
parallel laminar flows. This gradient generator has been widely applied 
because it is controllable to generate different shapes of gradients and 
maintain it for a while. At the same time, the concentration generating 
part of this gradient generator is independent of the reaction analysis 
part and is easy to integrate with other chip modules to improve the 
analysis flux.

Laminar flow diffusion-based microfluidic gradient generator

The laminar flow diffusion-based gradient generator is another 
widely used gradient generation platforms since it has a simple 
channel structure. In this gradient generator, two [or more] fluids of 
different compositions conflate side by side in a channel due to the 
effect of laminar (Figure 1b). The structure of this gradient generator 
is typically Y channel (or multiple Y inlet channel), and each branch of 
the Y flows fluids of different compositions. Reagents contained in each 
laminar fluid mixed gradually driven by diffusion force and create a 
gradient that perpendicular to the flow field [154,155]. There are three 
advantages of this gradient generator, First, it has a simple channel 
structure and easy to fabrication [101]. Second, gradient concentration 
can be generated in a microscale that down to cellular level [156]. Third, 
gradient concentration can be maintained and controllable flexibly 
[157,158]. In spite of those advantages laminar flow-based gradients 
have some limitations. First, the constant flow caused shear stress was 
an interference factor for cell biology study. Second, the formation of 
gradient profile was critically affected by flow rate. Finally, they are 
untoward to large-scale integrate due to their typical structure [159]. 
Therefore, it is difficult to maintain a stable gradient and needs high 
precise flow rate control equipment [159]. For these reasons, application 
of laminar flow diffusion-based microfluidic gradient generator has been 
limited. Laminar flow diffusion-based gradient generator is capable of 

Figure 1: (a) Convection mixing-based gradient generator; two different solutions were introduced from top inlets and allowed to flow through splitting and mixing 
network. (b) Laminar flow diffusion-based gradient generators; two branches of different concentrations merge into one channel in which the gradient is generated 
transversally to the direction of the flow. (c) Static diffusion-based gradient generator; Solution of a fixed chemical concentration flows in the source channel while blank 
buffer flows in the sink channel. The chemical diffuses through the agarose gel membrane, and forms a linear gradient in the center channel. (d) Geometric metering 
mixing-based gradient generator; when the lengths of the distribution channels for liquids reagent and buffer were a and b, respectively, mixing ratio is b: a.
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generating a concentration gradient stabilized in spatial and temporal. 
Also, the shape of the concentration gradient can be controlled by 
changing the geometry of the fluid channel or adjusting the fluid flow 
rate. However, laminar flow diffusion-based gradient generator also has 
some drawbacks, i.e., the flow of fluid will produce a fluid shear force 
that is detrimental to the cell. In addition, cell-secreting intercellular 
signaling factors are also taken away by flowing fluids.

Static diffusion-based microfluidic gradient generator
The static diffusion-based microfluidic gradient generator (Figure 

1c) established gradient without convective flows in the channel by 
diffusing a reagent through a section with high fluidic resistance, such 
as multiple narrow micro-channels [160], micro-porous membranes 
[161], or gel walls [162]. This gradient generator can meet the need 
for (i) reducing interference of shear stress in cell biological tests. (ii) 
Easy to operate. (iii) Suitable for high-throughput assays [163]. The 
static diffusion-based gradient generator can achieve a wider range of 
geometrical gradient profiles, and shape of gradients and development 
of nonlinear could be controlled [127]. However, these gradients 
typically took long time to establish and provided less control of dynamic 
variation of gradient profile and diffusion distance. Nevertheless, static 
diffusion-based gradient generator has been generally accepted in 
cell biology assays due to improved usability. It becomes a trend that 
emerging from commercially available gradient platforms such as the 
Ibidi [164] or Bell-Brook [165], which are becoming “gold standards” 
for cell migration studies. The static diffusion-based microfluidic 
gradient generator effectively reduces the unnecessary flow of fluid 
present in the micro-channels. However, in the static diffusion-based 
microfluidic gradient generator, since the molecular diffusion is the 
determinant of the concentration gradient generation, the resulting 
concentration gradient shape is not easy to manipulate compared to the 
concentration gradient based on the laminar diffusion concentration 
generation of the chip. 

Geometric metering mixing-based microfluidic gradient 
generator

The geometric metering mixing-based microfluidic gradient 
generator has two processes for generating gradients. First, introduced 
liquid flows were divided into several downstream flows geometrically 

through different distribution subchannels. Second, each divided flow 
met with the divided flow of buffer fluid and mixed at a joint point. 
The mixing ratio of the two flows depended on the geometry of the 
precisely designed distribution channels, without interference of flow 
rate. For example in Figure 1d, both flows divided into equal number 
of the distribution channels, and they are connected at the joint points. 
Basic principle for generating concentrations gradient was that two 
flow liquids are introduced from both sides continuously [142]. It is 
well known that a microchannel network is similar to analogy of a 
resistive circuit, in which the applied pressure P, the flow rate Q, and 
the channel hydrodynamic resistance R were respectively analogous 
to voltage V, electric current I, and resistance R, in Ohm’s law [166-
168]. When the flow rates, viscosity of two flows, widths and depths of 
the distribution channels are all uniform, length of every distribution 
channel will be proportional to its hydrodynamic resistance. Namely, 
ratio of lengths of the distribution channels is in inverse proportion 
to mixing ratio of two flows at a joint point. Thus, mixing ratio of the 
two flows will not be affected by diffusion coefficients of the molecules, 
diffusion length [channel width], and introduced flow rate. The greatest 
feature of geometric metering mixing-based microfluidic gradient 
generator is the ability to generate a concentration gradient quickly, 
which stabilized in spatial and temporal. However, there is fluid flow 
in the microchannels, and the resulting fluid shear force has an adverse 
effect on the cells.

Applications of Microfluidic Gradient Generator
Microfluidic gradient generator as an emerging technology 

platform can precisely control formation and direction of chemical 
concentration gradient. Utilizing these characteristics, concentration 
gradient of various substances could be generated and applied to 
different scientific fields. Here we summarized the gradient generator 
into following categories: gradients of the compositions in solution, 
gradients of physical-chemistry on the surface, gradients of shear 
stress in solutions, and gradients of refractive index in solution. In the 
following sections, generating of such gradient and its application will 
be discussed.

Generating gradients of compositions in solution

The gradient of compositions in solution has its own significance in 

Figure 2:  Schematic of the integrated microfluidic device for cell-based high content screening; the device consists of eight uniform structure units and each unit is 
connected by a common reservoir in the center of the device.
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biochemical and chemical areas, especially in cell biology, including cell 
growth and differentiation [17-28], axon guidance [29-32], neutrophil 
chemo-taxis [33-35], cell migration [36-39], cancer chemotaxis 
[40], bacteria growth and chemotaxis [41-44], cytotoxicity [45-54], 
optimization of reaction conditions [55], and bio-fabrication of 
chitosan membranes [56].

Chung et al. fabricated a gradient generator platform to optimize 
proliferation and differentiation of neural stem cells (NSCs) in vitro. 
In the platform, cells are exposed to continuous flow of growth factor 
concentration gradient, thus, minimizing autocrine and paracrine 
signaling. Directional responses were reported by Bhattacharjee et al. 
of main mammalian neurons to the diffusion gradient of metrin in 
vitro. They concluded from their assays that most neurons extending 
axons during gradient application grow toward netrin source. Their 
data show that netrin acts as a growth factor for this same population 
of neurons sustained exposure of Human NSCs (hNSCs) to a gradient 
of a growth factor (GF) mixture containing epidermal growth factor 
(EGF), fibroblast growth factor 2 (FGF2) and platelet-derived 
growth factor (PDGF) for more than one week. NSCs stayed healthy 
throughout incubation period and more importantly, proliferated and 
differentiated in a graded and proportional fashion that varied directly 
with GF concentration [17,29]. Jeho et al. developed a device that can 
generate temporarily and spatially controlled gradients of chemokines 
and used this to study migration of human neutrophils in simple and 
complex interleudin-8 (IL-8) gradients (Figure 2) [33]. Barkefors et 
al. utilized a microfluidic chemotaxis chamber to study response of 
hill-shape gradient of fibroblast growth factor 2 (FGF2) and vascular 
endothelial growth factor A (VEGFA) to migration of endothelial 
cells. Analysis of cell migration at different gradient regions showed 
chemotaxis decreased when cells reached the high end of the gradient. 
Their findings indicate that gradient of chemokine growth factor may 
direct transition from endothelial cells to non-migratory phenotypes 
when endothelial cells approach source of growth factors [37]. Diao et 
al. developed a concentration gradient generator that produces a linear 
gradient without fluid shear force on the cell, ensuring that cell migration 
is caused by cell chemotaxis rather than by variations in fluid flow. With 
this device, they found that wild type Escherichia coli strain RP437 
migrated toward attractant (e.g., L-asparate) and away from repellent 
(e.g., glycerol), while there was no change in bacterial distribution 
of RP437derivatives without motility capacity or chemotaxis. Their 
research demonstrated that E. coli absence of autoinducer-2-mediated 
quorum sensing response to chemoattractant L-aspartate was in 
some sense indistinguishable from the wild-type. This indicates that 
chemotaxis is isolated from this cell-cell communication model. Saadi 
et al. investigated migration of human metastatic breast cancer cells 
in different conditions using a microfluidic chemotaxis chamber that 
can generate multiple growth factor gradients simultaneously. They 
quantified and compared migration of breast cancer cells at 0–50 ng/
ml and 0.1–6 ng/ml of epidermal growth factor (EGF) gradients. The 
results showed that the cells responded favorably to a gradient of 0–50 
ng/ml. However, a shallow gradient of EGF could induce chemotaxis, 
and EGF can direct migration over a large gradient range, confirming 
potency of EGF as a chemo-attractant [40,41]. Ye et al. described an 
integrated microfluidic platform containing multiple concentration 
gradient generators for high-throughput studies of anti-cancer drug-
induced apoptosis. This platform can extract maximum information 
from tumor cells in response to different concentrations of several 
drugs, with less time and minimal sample, which is of significance for 
cancer and basic biomedical research [54]. Damean et al. demonstrated 
that a microfluidic technology could compartmentalize and measure 

different chemical reactions in pL volumes simultaneously. This 
technique can be used to analyze a set of chemical reactions restricted 
in identical volumes (5 to 60 pL) of strings of water-in-oil droplets 
that contain different reactant concentrations. This technique 
provides a useful method for continuous and simultaneous analysis 
of multiple chemical reactions [55]. Luo et al. demonstrated an in situ 
pH gradient generation in microfluidics for freestanding and semi-
permeable chitosan membranes bio-fabrication. In the microchannel, 
a pH gradient was formed at the converging interface between slightly 
acidic chitosan solution and mild basic buffer solution, and pH-
stimuli-responsive polysaccharide chitosan was recruited to form 
a freestanding hydrophilic membrane. Thickness of fabricated 
chitosan membranes is 30-60mm, and uniform along the flow 
interface in the microchannels [56].

Generating a gradient surface for physical and chemical ap-
plication

Growth and profilication of cells are not only affected by chemical 
agents in the external environment, but also by physicochemical 
properties of adherent substrates. Dertinger et al. described a general 
technique for generating a gradient of substrate-binding proteins 
with complex shapes. The gradient froming pure BSA to pure laminin 
were generated by the solutions within the microchannel and these 
proteins were adsorbed on the poly-L-lysine homogeneous layer. Rat 
hippocampal neurons were cultured on this substrate with a protein 
gradient. Optical imaging of these neurons revealed that the axon 
specification is directed toward increased surface density of laminin 
[169]. An integrated microfluidic gradient technology was developed 
by Zaari et al. which produce a microgradient-compliance substrate 
with photo-polymerization. They used the microfluidic chip to 
generate a concentration gradient solution of the hydrogel precursor 
and performed photopolymerization in a certain concentration of 
crosslinking agents. The cells were cultured on this microgradient-
compliance substrate and they found that the spreading area of the cells 
increased rapidly in the region above the elastic threshold value [170]. 
Kreppenhofer et al. injected two polymers into the microfluidic chip 
for concentration gradient to produce different compositions of two 
polymerization mixtures, then polymerized into polymer monolithic 
with a gradient of a surface pore size. The chip was reversibly bonded 
by coating a curing agent. The polymerization mixtures solution in the 
chip is polymerized and then the chip is opened to obtain a 450 μm thick 
porous film with a pore size distribution in a gradient [171]. In brief, 
combination of a microfluidic technology and photopolymerization 
is a powerful tool to produce gradient-compliance substrates to study 
implication of cell response to the substrate mechanics (Figure 3).

Generating gradients of shear stress in solutions

Cells are sensitive to different microenvironmental factors, 
including mechanical forces and chemical gradients. Applications 
of microfluidic concentration gradient chips were focused on cell 
biology. Thus, in vitro physiological models of cells should take into 
account how cells sense and respond to microenvironmental factors. 
These problems can be solved by using a microfluidic system, which 
controls physical properties of the fluid at the micro-nano scale. Park 
et al. introduced a simple and general method to generate chemical 
concentration gradients and shear gradients in a single chip. In this 
system, we formed a chemical concentration gradient by diffusion, 
and a shear-force gradient in the interstitial level passively through a 
circular channel (Figure 4). They evaluated the system by incubating 
mouse L929 cells simultaneously under shear gradient and nutrient 
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new challenges encountered in the application. Selection of a particular 
gradient generator platform requires considering experimental 
needs, such as maintaining low shear forces while keep the medium 
continuous perfusion, maintaining in vivo like conditions, retaining 
signal molecules and removing waste, etc. The microfluidic gradient 
generator could provide superior gradient control and gradient pattern 
when compared to the conventional gradient generation method. In 
addition, although the novel gradient design is important, it would give 
way to new applications of the gradient generator. These applications 
include integration with multiplexed drug screening, organs-on-a-chip, 
and some in other fields. The gradient generator platform can provide 
a microenvironment to investigate the miniaturized animal model and 
its response to chemical signals. Combined efforts would continue to 
benefit the field next few years to expand availability of these platforms 
and demonstrate their capabilities in a complex platform. In the future, 
Concentrating on reducing manufacturing and operational complexity 
would increase popularity rate of gradient generator platforms.
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concentration gradient. It was found that shear stress had a major effect 
on cell arrangement, migration and migration rates. At the same time, 
the concentration gradient of nutrients affects proliferation [152].

Generating gradients of refractive index in solution

Recently, Zhao et al. first used a concentration gradient microfluidic 
chip to control mixing of ethylene glycol and deionized water to obtain 
a glycol solution with refractive index as expected (Figure 5). This 
solution could act as an optofluidic lens and has low spherical and low 
field curvature aberrations. They discussed the optimal refractive index 
profile that can suppress spherical and field curvature aberrations in 
optofluidic lenses, which would greatly improve fine of the focal spot 
and reduce focal length variation of the light source at different off-
axis positions. This optical flow control lens with low spherical curvature 
and low field curvature distortion would find their applications in on-chip 
sample illumination, multiplexed detection and light manipulation [153].

Conclusion
Concentration gradient generator can serve for multiple 

experiments since it increases resolution of dose-response studies 
and reduces analysis time and other efforts. The microfluidic gradient 
generator would continue to evolve to address its existing problems or 

    

Figure 3: (a) Fabrication of polymer monolithic surfaces with a gradient of pore and polymer globule sizes from ∼0.1 to ∼0.5 μm defined by compositions of two 
polymerization mixtures injected into a microfluidic chip. (b) A microfluidic device was used to generate a covalently conjugated gradient of polydopamine (PDA), which 
changed wetabilty and surface energy of the substrate. The gradient was subsequently used to enable spatial deposition of adhesive proteins on the surface. When 
seeded with human adipose mesenchymal stem cells, the PDA-graded surface induced a gradient of cell adhesion and spreading.

 
Figure 4: Wall shear stress distribution, with corresponding profiles (inset-right) measured at 0°, 90°, and 180°. The x-axis indicates distance from the outer rim. The 
same column numbers indicated in the x-axes of these graphs were used in subsequent experiments.
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