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Editorial
During the last ten years, next generation sequencing methods, 

technologies and platforms have revolutionized genomics and 
transcriptomics research fields and advanced their applications in 
agriculture and biomedicine [1-3]. To date, the Roche 454 GS FLX(+) 
system, Applied Biosystems SOLiD (supported oligonucleotide ligation 
and detection) and Ion Proton/PGM/Chef systems now owned by Life 
Technologies (Grand Island, NY); Solexa GA (Genome Analyzer)/
HiSeq/MiSeq/NextSeq developed by Illumina (San Diego, CA); and 
PacBio RSII system made by Pacific Biosciences (Menlo Park, CA) 
present five major platforms in the market. They utilize different 
sequencing chemistries (e.g., sequencing by ligation vs. sequencing by 
synthesis); templates (e.g., single molecules vs. clusters amplified by 
emulsion or bridge PCR); product sizes (e.g., from 75 bp to 8,500 bp 
in length) and number of reads per run (e.g., from one million to 5,000 
million) [2,3].

Both DNA and RNA sequencing projects have been largely carried 
out using these platforms, which require construction of relevant 
libraries. Depending on the project goals, genomic DNA sequencing 
can be classified into 1) whole genome sequencing/re-sequencing and 
2) reduced genome complexity sequencing. However, transcriptome
analysis methods can be classified in different ways. When each
transcript is considered as a unit, transcriptome sequencing can be
grouped into two categories: 1) end to end (5’ – 3’ end) sequencing and 
2) either 5’ end or 3’ end sequencing only. Alternatively, transcriptome 
analysis can be conducted by sequencing specific RNA sub-populations, 
such as polyA+ RNA sequencing, polyA- RNA sequencing, microRNA 
sequencing, circular RNA sequencing, isoform sequencing or others
[2].

Nevertheless, the original DNA and RNA molecules are 
manipulated during library preparation. Fragmentation with chemical 
treatment, enzyme digestion or physical shearing is often used, breaking 
DNA/RNA molecules into pieces. Enrichment is a process to develop 
libraries for specific sub-groups or targets/signatures of DNA/RNA 
for sequencing. Both 5’ and 3’ end adaptors are ligated to fragmented 
DNA/RNA molecules, forming “5’ adaptor – DNA/RNA inserts – 3’ 
end adaptor” sandwiches that fit into sequencing platforms. To date, 
direct RNA sequencing [4] is the only method that does not require 
PCR in any part of the process, while other methods use PCR in both 
library preparation and sequencing stages (such as emulsion and bridge 
amplification). Conversion of RNA molecules into complementary 
DNA molecules by transcriptase is an essential step in gene expression 
profiling. Size selection of library products not only helps remove 
unused adaptors or oligos, but it also enhances sequencing efficiency 
set up for each sequencing platform. In addition, end repair and tailing 
are also needed in some methods. Certainly, these manipulations can 
produce biases, noise or artifacts, depending on how libraries are 
constructed.

Biases
It is well known that RNA-seq data analyses possesses three biases: 

fragmentation bias, length bias and transcriptome composition bias 
[5,6]. When RNA molecules are chemically cleaved or physically 
sheared, fragmentation bias results in fewer reads derived from both 
5’ and 3’ ends of transcripts, because the process favors their internal 
sequences. Short transcripts should have less total reads in libraries as 
compared to long transcripts, causing a length bias even though long 
and short transcripts are expressed at similar levels. Transcriptome 
composition bias results when one or a few transcripts in a given 
sample are expressed at extremely high levels, thereby downplaying the 
number of reads collected for other transcripts [6]. Therefore, several 
methods have been proposed to correct these biases, thus providing 
unbiased estimates of gene expression through data normalization. As 
pointed out recently by Finotello and colleagues [6], however, some 
methods remain error prone. 

Genotyping by sequencing leads to biases as well, particularly in 
number of reads per sample, number of sites sequenced per sample and 
number of reads per site. For example, Byrne and colleagues [7] reported 
that coefficients of variation ranged from 27% to 62% for number of 
reads per sample. The authors found that both barcode (F(31, 223) 
= 20.93, p,0.001) and barcode length (F(4, 250) = 29.89, p,0.001) had 
significant effects on read numbers per sample. In addition to variation 
in number of reads per library, Chen et al. [8] also observed variations 
in number of sites with reads mapped per library, ranging from 171,472 
to 447,051 sites per sample. Based on the Zea mays genome reference, 
frequency of enzyme ApeKI recognition sites in the reference genome 
and size selection of 70 – 318 bp in library construction, Beissinger 
and colleagues [9] predicted that this process should yield reads for a 
total of 1,406,269 sites. Theoretically, they expected that the number of 
reads per site would follow a Poisson distribution with mean equal to 
the average coverage (~40 reads per site). However, in reality, 0 reads 
were recorded for 1,021,382 sites and the remaining sites had 1 – 95,014 
read(s) per site.

Noise
End-to-end sequencing of transcripts by RNA-seq is not cost-

effective for conventional transcriptome analyses. As such, the 
community has developed more than 15 methods and technologies to 
carry out whole transcriptome tag/target sequencing [2]. These methods 
can produce noisy reads from unwanted products generated in library 
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construction. For example, Ma and coworkers [10] compared different 
methods for target sequencing of PATs (polyA tags). Surprisingly, 
the authors reported that the percentage of reads mapped to the 
3’untranslated regions accounted for 1.8% to 52.8% among 20 libraries. 
This means that the noisy read rate ranged from 47.2% to 98.2%. These 
results clearly indicate that noisy data can be overwhelmingly produced 
at some point during the library preparation process.

The SAGE (serial analysis of gene expression) technique was 
designed to catch one tag per transcript only [11]. However, this is not 
true in practice. When we studied the reactomes of porcine alveolar 
macrophages infected with porcine reproductive and respiratory 
syndrome virus (PRRSV), we found that noisy tags were abundant 
[12]. In addition to the 3’ most tag, for example, at least 10 other 
tags for pig interleukin 1, alpha (IL1A) were present in the library. 
Generally speaking, the 3’ most tag is expressed most abundantly, 
but the numbers of tags per million (TPM) for other tags decrease 
significantly depending on their distances from poly(A) end of the 
mRNA. Nevertheless, the results indicate that SAGE-based tools 
generate noisy data for transcriptome analysis. In fact, only the 3’ most 
cut site tag is the only tag that should be used in analysis. If other tags 
were wrongly chosen for analysis, expression patterns/trends of a given 
gene might be dramatically different.

Artifacts 
Library preparation often uses ligases, either T4 ligase for DNA 

ligation or T4 RNA ligase for RNA ligation. As discussed above, 
ligation adds adaptors/linkers to 5’ end and/or 3’ end of DNA/RNA 
inserts, allowing them to fit in specific sequencing platforms. In reality, 
not only 5’ adaptors – DNA/RNA inserts – 3’ adaptors, but other 
combinations within inserts or between adaptors and inserts can occur 
randomly, especially when DNA/cDNA molecules are digested with 
restriction enzymes. Our recent experience shows that even a 120 bp 
read can contain three digested fragments that are located on different 
chromosomes. For example, after “unchaining” of the ligated artifacts, 
106 million reads were increased up to 132 million reads with ≥ 36 bp in 
length. As a consequence, the unique mapping rate was also improved 
from ~45% to ~65%. In my opinion, the community needs to pay more 
attention to the artifact issues that occur during the preparation of next 
generation sequencing libraries. 

Summary 
Here I just listed a few examples about biases, noisy data and 

artifacts due to DNA/RNA manipulation during preparation of the 
next generation sequencing libraries. Therefore, bioinformaticians 
should get to know how the libraries are prepared before they can 
develop programs and software to handle these challenges sufficiently 
and carefully. In particular, we need to be cautious if we would develop 
tools to explore polyadenylation events using RNA-seq data, because 
the 3’ UTR reads are biased and incomplete. We would not collect 
reliable information if we simply use the tag counts derived from a 

SAGE library or its derivatives to determine alternative polyadenylation 
events or proximal to distal/distal to proximal site shifts. Furthermore, 
ignoring artifact reads is not cost-effect. Next generation sequencing 
technologies generate high quality reads since none of the platforms 
use Sanger sequencing. However, data analysis errors will occur if we 
do not pay attention to biases, noisy data and artifacts. 
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