alexa Mir-195: Roadblock for Reprogramming Aged Cells | Open Access Journals
ISSN: 2168-9431
Single Cell Biology
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Mir-195: Roadblock for Reprogramming Aged Cells

Lin Jiang1, and Yigang Wang2*

1Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati, Cincinnati, USA

2Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, USA

*Corresponding Author:
Yigang Wang
Director, Regenerative Medicine Research
Professor, Department of Pathology and Laboratory Medicine
University of Cincinnati, 231 Albert Sabin Way
Cincinnati, OH 45267-0529, USA
Tel: 5135585798
E-mail: [email protected]

Received Date: Mar 29, 2017Apr 11, 2017 Accepted Date: Apr 11, 2017 Published Date: Apr 13, 2017

Citation: Jiang L, Wang Y (2017) Mir-195: Roadblock for Reprogramming Aged Cells. Single Cell Biol 6: 159. doi:10.4172/2168-9431.1000159

Copyright: © 2017 Jiang L, et al. This is an open-access article distributed under the terms of the creative commons attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Single Cell Biology

Abstract

Advanced age remains the greatest known risk factor for human diseases. According to a National Institute on Aging report, it is anticipated that people aged 65 or older will number nearly 1.5 billion by 2050, representing 16% of the world’s population and a dramatic increase in the economic burden of providing care to patients with senile chronic diseases. Recent evidence strongly supports the current hypotheses that age-induced deterioration of tissue stem cells play an important role in initiation of several aging-associated disorders including heart failure, Alzheimer’s disease, and Parkinson’s disease.

Commentary

Advanced age remains the greatest known risk factor for human diseases. According to a National Institute on Aging report, it is anticipated that people aged 65 or older will number nearly 1.5 billion by 2050, representing 16% of the world’s population and a dramatic increase in the economic burden of providing care to patients with senile chronic diseases. Recent evidence strongly supports the current hypotheses that age-induced deterioration of tissue stem cells play an important role in initiation of several aging-associated disorders including heart failure, Alzheimer’s disease, and Parkinson’s disease [1].

Currently available somatic cell reprogramming technologies offer a promising strategy for patient-specific cardiac regenerative medicine, disease modelling, and drug discovery [2]. Induced pluripotent stem cells (iPSCs) are an ideal potential option as an autologous cell source (as compared to other stem/progenitor cells) because they can be propagated indefinitely and large number of functional target cells can be generated [3].

Techniques used for iPSC generation have already resulted in enormous progress for age-associated disease therapies. The efficiency of reprogramming is influenced by a variety of factors that include induction method and the age of cells [4]. One of the major pitfalls of iPSC generation from aged donors is that isolated somatic cells show increased cellular senescence and resistance to reprogramming as compared to younger cells [5]. Reprogramming of aged somatic cells therefore requires efficient approaches to rejuvenate cell senescence, erase age-associated feature, or enlighten the reversibility potential of aging. Extensive studies have shown that aging seems to be a critical ‘roadblock’ for somatic cell reprogramming [6], but the essential genes controlling this process have not been fully revealed.

MicroRNA (miR) microarray analysis has been used to identify miR-195 as a senescence-associated factor mediating aged mesenchymal stem cells [7]. Kondo et al. recently demonstrated that miR-195 acts as a barrier for reprogramming skeletal muscles (skMs) from old mice [8]. Expression levels of miR-195 were significantly upregulated in old skMs (2.3-fold at 24-months) as compared to cells from young mice (2-months) using RT-PCR and in situ hybridization. Proteins linked to the senescence pathways (i.e., P53, P21, and P16) were activated in SkMs obtained from old mice, and the characteristics of cellular senescence were demonstrated by β-galactosidase staining and telomere length reduction [8].

skMs also become resistant to reprogramming as they age, and miR-195 is significantly decreased in iPSCs derived from old skMs [8], indicating that miR-195 is a negative mediator of iPSC reprogramming. Kondo et al. used a lentiviral vector to knockdown the expression of miR-195 in old skMs to determine its role in iPSC generation. Inhibition of miR-195 was associated with downregulation of senescence-associated genes (i.e. FOXO1 and P53 ) and elongation of the telomere [8]. Furthermore, blockage of miR-195 significantly (2.2 fold) increased the reprogramming efficiency of old skMs after transduction of Yamanaka factors (OKSM), as shown by alkaline phosphatase staining and expression of pluripotent genes (i.e. SSEA1 and Nanog ). The differentiation potential of iPSCs modified with miR-195 inhibitor was also confirmed by teratoma formation assay and staining of 3-germ layers. These results suggest that the iPSCs generated by this new approach possess properties similar to embryonic stem cells and are capable of differentiating into the functional cells of three germ layers.

MicroRNAs are post-transcriptional gene regulators in cells and can be manipulated to provide a better understanding of specific factors that alter aging signalling pathways during cellular reprogramming [9]. An online computational analysis by Kondo et al. identified Sirtuin (SIRT1) as a potential target of miR-195. Subsequently, the interactions between miR-195 and SIRT1 were demonstrated by luciferase assay and gene expression analysis [7]. TERT (telomerase reverse transcriptase) comprises the most important unit of the telomerase complex and prevents degradation of the chromosomal ends, and was also upregulated in old skMs after inhibition of miR-195 [10]. SIRT1 has been shown as an important gene for telomere elongation and genomic stability of iPSCs [11]. These findings suggest that inhibition of miR-195 can increase telomere length in old skMs through restoration of the expression of telomerase genes.

In summary, Kondo et al. demonstrated that miR-195 serves as a target of cellular reprogramming and inhibition of miR-195 can be used as a tool to overcome genetic pitfalls associated with reprogramming aged cells into iPSCs. miR supplementation potentially facilitates iPSC generation approaches with high efficiency and quality. This novel approach could be of potential benefit for the development of effective stem cell therapies that treat age-associated diseases in the future.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

Article Usage

  • Total views: 160
  • [From(publication date):
    June-2017 - Aug 23, 2017]
  • Breakdown by view type
  • HTML page views : 136
  • PDF downloads :24
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords