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Abstract

This paper provides approximate solutions to some nonlinear Fredholm-Integro differential equations of the
second kind by using a Modified Variational Iteration Method. Comparison of the approximate solutions of this
method with other known methods shows that the Modified Variational Iteration scheme is more accurate, reliable

and readily implemented.
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Introduction

Many researchers in engineering and physical sciences have used
different numerical methods to solve Fredholms Integro-differential
equations. Many of these numerical methods gave reliable and accurate
solutions [1] applied multi-wavelet direct method for solving integro
-differential equations; Ghasemi et al. [2] used Homotopy perturbation
method to solve integrodifferential equations [3-6]. Maleknejad et
al. [7] use integral mean value theorem II [8-10] adopted Bernstein
collocation method find approximate solution in Fredholm Integro-
differential equation, and Jianhua et al. [4] used Hybrid Function
Operational Matrix techniques in Solving Fredholm Integro-
differential Equations. Lakestani et al. used spline wavelets method to
solve the integro-differential equations, Rashidinia and Tahmasebi.
Used modified Taylor expansion Method in solving Fredholm intgro-
differential equations and Shahooth et al. use Bernstein Polynomials
Method. In this paper, nonlinear Fredholm integro-differential
equations of the second kind where solved by modified variational
iteration method which uses few numbers of iterations. Numerical
examples and graphical results will demonstrate the efficiency of the
method and will be shown that the method is accurate and readily
implemented compared to some existing methods.

Non-Linear Fredholm Integro-Differential Equations

Consider the general non-linear, second kind Fredholm Integro-
Differential equations of the form:

)+ 32K (x.0) F (u(0)))de (0) = ¢, 0k < (n=1) (1)

u™(x) indicate the n-th derivatives of u(x), ¢, are constants that
represent the initial conditions and F(u(t)) is non-linear. u(x), fi(x)
assumed to be real and, A is real finite constants F, ﬁ and ki are
continuous functions and is the unknown function to be determined.

Derivation of Modified Variational Iteration Method

To illustrate the basic concepts of Modified Variational Iteration
Method, we consider the differential equation:

Lu+Nu=g(x) (2)

L, N are linear, nonlinear operators respectively and are the
inhomogeneous term. The variational iteration method presents a

correction functional for eqn (2) in the form:
(x)+] A( £)+Nu,(£)-g(&))dé 3)

Aa general Lagrange’s multlpher, which can be identified optimally via
variational theory, that is, integration by parts and by using a restricted
variation.

Determining the Lagrange’s multiplier, this can be identified
optimally via integration by parts and by using a restricted variation.

Setting Lu, (&)=u'(£) (4)
J:M:)(u;(é))d:=z<¢>un<5>— [ (&), (&) )
[ &) (@) = 22w, (£)-2(2) 1, () + [ 7()(w, (£

¢(u 4G y¢ A& (€)= #(8) (1, () A" (£)m, (£)- [ " (£)(w,
A u (@ =2 ()2 (E) " )+ 7" (), (£)=2"(E)m, (£

The generalized integration by parts is
[ A ()] = 2(E)u, " (6= ()4 2 (E), (£) = -

() [ A" (S, (£)de

Noting that in this method may be a constant or a function, and
is a restricted value that means it behaves as a constant, is considered
as restricted variation, i.e., where is the variational derivative. The
extremum condition of requires that and this yields the stationary
conditions:

142, =0,4]_,

The successive approx1mat10ns u ., n>0 of the solution u(x) will
be readily obtained upon using selective function u_(x)

=0 hence\=-1 (7)
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The Non-linear term is expressed in a unique way that gives a
better approximation than the Adomian polynomial, Bell polynomial,
Orthogonal polynomial just to mention a few. Considering a special
case of eqn. (1) as:

u ()4 £ (x) 4 AL () ()

Subject to the initial conditions u”(0)=c_where c_, r=0,1..
are real constant and k, m are integers with k <m<n.

'")(t)dt =g(x) (8)

.(n-1)

In solving the general nth-order nonlinear integro-differential
equations, we consider the following general functional equation of the
form:

Lu=f+N(u)

Where N is the Non-linear differential operator, f is a known
analytical function, N(u ) is the nonlinear operator which is
decomposed as

N(Zuj =N(u0)+2{N[;0u/j—N(§uJ ©)

u, are polynomials of x,

N, +u, +u, +....4) = N(u0)+i{N(u0+ul+ ...... +u1)—N(u0+ul+ ...... +uH)}
i=1

The recurrence relations are defined as
u, =1

u = N(un)

u, = N(u0+u1)—N(u0)

U, = N(uO +u, +u2)— N(uo)

>

U, = N(u0+u1 +..

+u”)—N(u0+u1 +....+u,,_1)n =12..

Assume a series solution of the form:

n-1
Jj=0

The non-linear term in eqn. (3) can be written as Ni, (&)= Nu, (&)

The n-th
Uy+uy+ ...t u

term approximate
= N(u0+ul +...+u")

solution in eqn. (10) is

n+l

Apply L to the recurrence relation for the determination of the
components, the (n+1)™ approximation of the exact solutions for the
unknown functions u(x) is obtained as

1,0 (%) =N (g + 1t +eoeeat,) = N (g + 10+t ) = LN (g + 1+ oot ) = LN (g + 11, + oot )

The solution is constructed as:

:L’lriun(x),nzo (12)

x)+ [ A &)+ Ni(&)-g(&))dé (13)
The mod1ﬁed algorlthms is formulated as
n-l
.4 +j ( §)+L‘Zun(§))d§ (14)
n=0
Numerical Examples

In this section, some numerical examples are given to illustrate
the accuracy and effectiveness properties of the method and MAPLE
17 package is used to carry-out the calculation. The absolute errors

used is defined as ‘H(X) - NN ,u(x) is the exact

solution and u, is the approximate solution. The numerical solutions
of this method will be compared with the numerical solutions of other
known methods.

Example 1

Consider the first-order Fredholm integro-differential eqns. (2)
and (15)

u" (x)= f——+ (x —t)u’ (t)dt (15)

With the initial conditions u(0)=0 and exact solution u(x)=x, the
correction functional for eqn. (15) is constructed as

um(x):un(x)+.[:/l(§)|:Lu”(§ —7+——[ IZ( ) )dr}if

And making the functional stationary and noting that, i, is a
restriction variation, i, =0 . To find the optimal A(§) and calculate
variation with respect to u, we have the stationary Conditions by
applying eqns. (4) and (5):

du,:1 +/1‘§:X =0 and ou,: /1"’5:) =

The Lagrange multiplier can be identified as A\=-1

u,, (x)=un (x)—J.; Lu”(é)—%+x3—z—l’1§(§z —r)u 2(r))dr:|d§

u,(x)=0
Consequently, we have the following approximations (Table 1)

u, (x)=1.250000000x - 0.111111111 1’

u; (x)=1.031957657x — 0.01481615250x°

u; (x)=1.031957657x —0.01481615250x’
u, () =0.988834956 Lx + 0.00518701277x’
u; (x) =1.003838294x — 0.001782108797x°

ug(x)=0.9986730892 x+ 0.000616215870x"
Example 2

Consider the following nonlinear system of third-order Fredholm
integrodifferential equation (Table 2)

u("")( =sin(x)- —I xtu'( (16)

With the initial conditions M(0)=1,M'(0)=1,u"(0)=—1 for

x,{o’ﬁ} . The exact solution u(x)=cos(x) the correction functional for
2

(16) is constructed as
e ()=, (x)+ [ 2( )=sin(&)+E+1 Z &r)(a) (r) )dr}dg

And makmg the functional stationary and notmg that, #, is a
restriction variation, i, =0. To find the optimal A(§) and calculate
variation with respect to u, we have the stationary conditions by
applying in eqns. (4) and (5):

Su,: 2" =0 Su,;: 2", =0 Su,:1+2]_ =0 and
E=x = 0
The Lagrange multiplier can be identified as
1 2
TRt
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X Exact Bernstein Polynomials Method (BPM) MVIM
Approximate Solution n=32 Absolute Error Approximate Absolute Error
Solution n=6
0.0 0.0 0.0000 0.00E+00 0.00000 0.00E+00
0.1 0.1 0.08810 1.19E-02 0.09987 1.32E-04
0.2 0.2 0.17802 2.20E-02 0.19974 2.60E-04
0.3 0.3 0.26784 3.22E-02 0.29962 3.81E-04
0.4 0.4 0.35861 4.14E-02 0.39951 4.91E-04
0.5 0.5 0.45067 4.93E-02 0.49941 5.86E-04
0.6 0.6 0.54433 5.57E-02 0.59934 6.63E-04
0.7 0.7 0.63991 6.01E-02 0.69928 7.17E-04
0.8 0.8 0.73773 6.23E-02 0.79925 7.46E-04
0.9 0.9 0.83811 6.19E-02 0.89926 7.45E-04
1.0 1.0 0.99935 6.50E-04 0.99929 7.11E-04
Table 1: Computations showing comparison of results for example 1.
X Direct Redial Basis Function Method (DRBFM) n=15 MVIM n=3
5.0 6.823E-01 2.60E+01
10.0 1.197E+04 4 17E+02
15.0 1.336E+03 2.11E+03

Table 2: Error for example 2.

i (¥) =2, ()= [ (6~ [ L, (&) ~sin (&) + £+ LY, (61)(&,

a2l

dr}a'(f

2

uO(x):l—x—

2
Consequently, we have the following approximations and errors
presented in Table 2.

u, (x) = cos(x)—0.04166666667x" +0.00897172358 1x
u,(x) =cos(x)—0.04166666667x" +0.007137527979x
uy (x) = cos(x)—0.04166666667x" +0.007550623256x
Example 3

We seek the solution of the third order Non-linear Fredholm
integro differential equation of the second kind (Figure 1).

@EX-FL ] (172')u2(1)dt (17)
360 12070

for x€ x E[O,l] with the initial condition u(0)=2,u’(0)=1,u”(0)=2

u'"(x)z xe* +

The correction functional for eqn. (17) is constructed as
u, (x)=u,(x)+ [ A(&)| Lu, (£)- ot Z (&2 )dr}d(f

and making the functional stationary and noting that, il, isarestriction
variation, &, =0. To find the optimal A4(£) and calculate variation

with respect to u
eqns. (4) and (5):

(&) (u," (£))dE=2(&)u,"

For n=3

we have the stationary conditions by applying in

n>

HE) = (&)u, 2 (&) + A" (S)u, (6) (1) j Yu, (£)d

Su,, =6u, +SA(E)ul (E)-A'(E)du, +6A"(E)u, —J.:ﬂ,'"é'(un)dﬁ
L) OA(E)u (8) A (§)ou, = [ A" (u,)dE

ox = Vanddu, :ﬂ‘éq =

Su,, =ou, (£)(1+ 4],

ou,:A"=0,6u,:1+ 4"

W

Using the natural conditions, we have ﬂ,"‘ fex = -1

Applying as a natural condition, the Lagrange multiplier can be

. . 1 2
identified as A = —2—!(5 -x)

Using the initial condition to obtain the zeroth approximation,
we have u =x+x* consequently, we have the following approximations
(Figure 1):

u,=5.997222222x +2.998611111x> +5.997222222

—0.000315941756x> —0.000315941756x"
-0.000157970878x" — 0.01562500000x°¢ >**
+0.002430555556e"x° + xe* —5.997222222¢"

u,=5.997222222x +2.998611111x* +5.997222222
—0.0002156748356x" —0.0002156748356x"
—0.0001078374178x" —0.4313917376x’¢ "
—0.05112536359¢"x* —1.000000000xe™ —5.997222222¢"
—6.00000000010" x’¢" +0.2897948689x’¢ "
+0.06254608315x°e*** + 4.84406002010 * x’e ***

u, = 5.997222221e" +4.000000000010™ ¢
—2.00000000010~¢™"** — 2.00000000010 ¢
+5.997222221-2.40000000010~° ¢ 2** x + 5.997222222x
—2.00000000010™"°¢™**x +0.99999999996¢" x
+6.000000000 107%™ x +2.9986111111x°
+1.00000000010™°e** x? + 6.00000000010° ¢ x?
+7.761846675 107 ¢ x* — 0.2515520023 ™" x*
+0.9341450524¢ " x* +1.827832614e "%’
—0.00001090193898 ¢ x* —2.212800948 ¢ >** x
+4.655737595 107" ¢ x° +1.202289606 1072 ¢ x°
—0.1303620642 ¢* x* —0.0002156728717 x°
—0.0002156728715x* — 0.000107836435714x°

Conclusion

In this paper, numerical methods for approximating solution of
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Exact

Graphical representaion of the Exact solution of the corrolution third order FIDE

,,

Figure 1: Graphical representation of the exact solution of the convolution third order FIDE.

Graphical vepresentaion of the Approvimate sohition of the convobition thivd crder FID]

107 e g1
1" 1°

Non-linear Fredholm-integral differential equation of the second kind
are considered by using the modified vibrational iteration (MVIM) and this:

* Help to reduce some inherited problems and weakness
associated with other method as outlined in literatures.

* Comparison of the approximate, exact solutions shows that
MVIM is more an efficient tool and more practical for solving
non-linear systems of integral-differential equations and plot
confirm.

+ It will now be possible to investigate the approximate solution
of nonlinear applied problems, particularly of the nonlinear
problems in dynamic model of a chemical reactor and the
present method reduces the computational difficulty of other
traditional methods and all the calculation are made simple.
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