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Introduction
3D-QSAR methods are now standard tools in medicinal chemistry 

projects. The Grid-Independent Descriptors (GRIND) was published 
in the year 2000 and the first version of the software used to generate 
GRIND-based 3D-QSAR models (ALMOND) was available in the 
same years [1,2]. Briefly, the calculation of GRIND descriptors involves 
three steps: computing a set of molecular interaction fields (MIFs) for 
molecules in the data set, filtering the MIFs to extract the most relevant 
regions, and encoding the filtered MIFs (also called final nodes where 
a node represents a favourable probe target molecule interaction 
region) into GRIND variables. This procedure works on the final nodes 
and computes the product of the interaction energy for each pair of 
nodes. The products are then ranked according to the distance between 
nodes. Distances are grouped in a discrete number of categories and 
in each category, only the product with the highest value is stored and 
represent one GRIND variable. GRIND variables are then grouped into 
blocks (=correlogram) representing distances between pairs of nodes. 
Finally, the GRIND variables constitute a matrix of descriptors that can 
be analysed using multivariate techniques [1].

Three main reasons underlie the appeal of these descriptors: 
GRIND is alignment-independent, they are chemically interpretable 

and quick and easy to compute. GRIND-based 3D-QSAR models have 
thus been successfully used to describe some biological topics [3-5].

Quantitative structure-activity/property relationship (QSAR/
QSPR) approaches, as progressive tools in modeling and prediction of 
many physiochemical properties offer a fast measure of predictability in 
the absence of extensive experimental or computed data on compounds 
properties. 3D-QSAR, which refers to use of force field calculations to 
compute spatial properties of a three-dimensional structure (3D) of 
compounds, provide useful information of the forces and interactions 
between two molecules [6,7]. The GRIND, alignment independent, 
interpretable and efficient to compute descriptors derived from GRID 
molecular interaction fields, was proved relevant in diverse structure-
activity relationship studies.

The skin is the human body's largest organ and protects the body 
from the xenobiotic influx. Local and systemic drugs can be distributed 
throughout the skin. Prediction of skin permeability is also crucial 
in toxicological assessment after topical exposure. Predicting human 
skin permeability of chemical compounds accurately and efficiently 
is useful for developing dermatological medicines and cosmetics. The 
skin permeability of a solute depends on several parameters, namely, 
chemical concentration in dose formulation (Cd), skin-vehicle partition 
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coefficient (K), diffusion coefficient in the skin (D), and thickness of the 
skin (L). The permeability coefficient (kp) quantifies the percutaneous 
absorption of chemicals through the skin defined as follows [8]:

. ss
p

d

JK Dk
L C

= =   (1)

Where, Jss is the steady state flux of the solute.

Early QSARs to predict skin permeation of chemicals revealed that 
hydrophobicity was correlated linearly with increasing permeability 
[9,10]. Using a larger dataset, Flynn presented a QSAR approach for 
95 chemicals, reporting algorithms for compounds with low and high 
molecular weights. Also, they demonstrated that skin permeability (kp) 
was a function of partitioning between aqueous and non-aqueous layers, 
as described by the octanol-water partition coefficient. Subsequently, 
many QSARs for skin permeation have been published utilizing the 
Flynn dataset, where the data have either been used as a whole or 
subsets taken into account for different types of compounds [11]. Potts 
and Guy were among the first to demonstrate the use of the logarithm 
of the octanol-water partition coefficient (log kow) in combination with 
molecular size descriptors, i.e., molecular weight (MW) or molecular 
volume (MV) to model skin permeability [12,13]. They obtained the 
following relationship as follow:

log kp=0.711 log kow - 0.0061 MW - 6.3 (2)

Other QSAR analyses have confirmed hydrophobicity and 
molecular size to be the influential descriptors of skin permeability for 
chemicals. It has also been demonstrated that the hydrogen bonding 
character of a compound might also influence greatly its ability to 
penetrate through the human skin [14-21]. Hydrogen bonding has 
been parameterized using a number of approaches including the 
number of hydrogen bonds that may be formed by a compound (Hb) 
hydrogen bond donor (Hd) and acceptor (Ha) ability of a compound, 
and the HYBOT plus series of descriptors introduced by Raevsky et al., 
as well as many others [20,22,23].

To achieve this goal, a dataset of 210 compounds, which had 
not previously been utilized for QSAR development, was analyzed. 
Furthermore, to explore the fundamental physicochemical meaning 
of skin permeability, a whole variety of physicochemical properties, 
hypothesized to be of significance, were calculated. These included 
calculated descriptors unique to this study to investigate the role 
of molecular size and hydrophobicity in skin permeability. Results 
indicate that GRIND-based 3D-QSAR approach can reliably predict 
continuation of our data in different areas in chemistry and related 
fields using the QSAR approach, is to develop, for the first time to 
our knowledge, a valid and predictive 3D-QSAR model, able to 
correlate and predict skin permeability with the applicability of GRID 
independent descriptors (GRIND) [24,25].

Materials and Methods
Data set

A new large dataset of 210 structurally diverse compounds with 
human skin permeability coefficients presented in the supplementary 
material. The dataset was compiled which are not obtained by in vitro 
diffusion study [26]. Therefore, this database is highly appropriate 
for evaluating the relationships between log kp and human skin 
permeability. It is hypothetically applicable to related research such as 
vehicle effects on skin permeability by using it combined with a dataset 
of skin permeability for solutions other than water. They were working 
on compiling a skin permeability dataset composed of a wide variety 
of permeants and solvents to develop the prediction models of vehicle 
effects on skin permeability in order to optimize topical formulations.

Our database has experimental skin permeability coefficients 
determined from the excised human skin. This database does not 
contain calculated permeability, data from other animals and data 
with chemical or physical penetration enhancement. Therefore, from 
this database, we can build models that directly detect the influence 
of molecular structures on human skin permeability. Our high-
performance GRIND prediction models will be reliable and useful 
tools for developing dermatological ingredients.

Compounds in this extensive database belong to various 
chemical classes, including alcohols, amines, amides, aromatics, 
carbonyls, carboxylic acids, esters, ethers, urea, halides, nitriles, and 
nitro compounds. Many of the compounds are active ingredients of 
pharmaceutical products, such as anti-inflammatory, anti-cancer, anti-
HIV, local anesthetic, stimulants, and sleep-inducing drugs.

Subset selection

A moderated Kennard-Stone algorithm, where the response vector 
has been replicated k (number of descriptors) times to enhance the 
influence of the response on the splitting results, was employed to split 
the data set into training and a prediction set [27]. The training set of 
150 molecules was used to adjust the parameters of the QSAR model, 
and the rest were used to evaluate models prediction ability as a test set 
(60 compounds).

Molecular optimization and descriptor calculation

The structure of molecules was drawn in ChemBioOffice 11.0 
and the mol files format exported in HyperChem 8.0.5. Two stages 
of molecular orbital (MO) calculation including MM+ force field and 
semi-empirical method AM1, gradient norm criterion 0.01 kcal/Å, 
were applied in the geometry optimization for all structures.

Grid-INdependent descriptors are a new class of molecular 
descriptors developed by Pastor et al. [5]. Pentacle software 1.05 
(Molecular Discovery Ltd, Oxford, UK) has been proposed as a tool 
to extract descriptors [28]. Grid molecular interaction fields (MIFs) of 
nodes are computed by four GRid probes, and a pair of nodes (GRid 
MIF minima) is used as descriptors (variables) [29]. Only those pairs of 
nodes (for the same or different probe types) with the highest product 
of interaction energy (IE), at the given distance range, were used for 
the PLS analysis. For the derivation of MIFs, four most recommended 
probes were used. To represent steric and hydrophobic interactions, 
hydrogen bond acceptor, and hydrogen bond donor groups, we used 
DRY (hydrophobic probe), O (carbonyl oxygen), and N1 (amide 
nitrogen), respectively. These probes stand for strong non-covalent 
interactions between molecules and receptor. Moreover, to regard 
molecular shape effects in the receptor-ligand interaction process, 
and as complementary to point interaction based information, a 
supplementary probe, called TIP (shape probe), was applied that 
extracts each ligand’s isosurface at 1 kcal/mol from the field of a 
normal GRid calculation. AMANDA algorithm as implemented in 
the software was applied for the filtering. This algorithm is the regions 
with the most relevant MIF that uses the intensity of the field at a node 
and the mutual node-node distances between the chosen nodes [30]. 
At each point the interaction energy (Exyz) was calculated as a sum of 
Lennard-Jones energy (Elj), hydrogen bond (Ehb) and electrostatic (Eel) 
interactions.

xyz lj el hbE E E E= + +å å å (3)

Maximum auto and cross-correlation (MACC-2) algorithm were 
applied for the encoding. The grid spacing was set to 0.5 Å and the 
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smoothing windows to 0.8 Å. The MACC-2 (Maximum Auto and 
Cross Correlogram) analysis output is usually represented directly in 
correlograms where each point represents the product of two particular 
nodes within the distance box separating the nodes of a certain 
compound. The values obtained from this analysis were represented 
directly in correlogram plots, where the product of node-node energies 
is reported versus the distance separating the nodes. Highest energy 
product can be defined for the same probe (obtaining four auto 
correlograms: DRY-DRY, O-O, N1-N1 and TIP-TIP) and for pairs of 
different probes (obtaining six cross correlograms: DRY-O, DRY-N1, 
DRY-TIP, O-N1, O-TIP, and N1-TIP).

Each block (or correlogram) of variables corresponds to a type 
of interaction between a couple of nodes: DRY (which represent 
hydrophobic interactions), O (SP2 carbonyl oxygen, representing 
H-bond acceptor), N1 (neutral flat NH, like in amide, H-bond donor)
and the TIP probe (molecular shape descriptor).

Variable selection and modeling

Several methods can be applied to decrease the original pool of 
descriptors to an appropriate size and to select the most informative 
variables. Reducing the pool of descriptors eliminates those descriptors 
that contribute either no information or whose information content is 
redundant with other descriptors present in the pool [31].

In present work, we applied the genetic algorithm (GA) variable 
selection method to GRIND. The GA method with a well-chosen 
objective function outclasses the traditional approaches and it is a 
superior option to achieve a representative subset of variables from 
a multi-experiment dataset [32]. GA is a method for moving from 
one population of chromosomes to a new population by using a kind 
of natural selection together with the genetics, inspired operators of 
crossover, mutation, and inversion [33]. The selected descriptors were 
employed to generate the models with the PLS approach. The flexibility 
of the PLS approach, its graphical orientation, its essential ability to 
handle incomplete noisy data with many variables and observations 
make PLS as a simple but powerful approach for the analysis of data 
in complicated problems [34,35]. For a dataset (X210 × 740) containing 
210 compounds, 740 descriptors have been obtained, using four GRID 
probes. After removing the descriptors containing only zero or constant 
values for all solute and the remaining 476 (X210 × 476), then the genetic 
algorithm (GA) was used to extract the more informative variables and 
generate the more predictive model with 118 descriptors (X210 × 118).

The GA was carried out during 200 generations with 30 
chromosomes in 1,000 runs with a probability of mutation 1% and 
the probability of cross-over 50% using the PLS-genetic algorithm 
toolbox. All descriptors and target values were normalized between 0 
and 1 prior to network training. All calculations were performed in the 
MATLAB (version 7.6.0, Math Works, Inc.).

Results and Discussion
It is widely believed that 3D descriptors should provide better 

descriptions of interactions between two compounds. However, most 
3D methods suffer from two constraints: use the correct conformation 
of a molecule, which may not even be the lowest energy conformation 
to compare structurally different compounds, and proper alignment of 
the compounds, a step that is time-consuming and may introduce user 
bias [36]. GRIND procedure was developed with the aim to overcome 
the alignment problem and was therefore selected for this study. This 
method is GRID-based MIFs that calculates the interaction energies 
between the molecule and chemical probes. When MIFs are computed 

for a molecule, the region showing favourable energies of interaction 
represent positions where two molecules would interact favourably 
with each other.

In a few words, the GRIND methodology involves three steps: 
computing a set of molecular interaction fields (MIFs) for molecules in 
the data set, filtering the MIFs to extract the most relevant regions, and 
encoding the filtered MIFs into molecular descriptors named GRIND. 
These descriptors represent the most important GRID interactions as 
a function of the distance instead of the position of each grid point 
[5,37-39].

Model construction

The chemometric analysis was carried out using the statistical tools 
included in Pentacle software. The GRIND descriptors were related 
to stability constants through partial least square (PLS) analysis. We 
selected the model with the best statistical performance. The algorithm 
of the used PLS was SIMPLS. It is precisely the same as PLS when there 
is only one response and invariably gives very similar results, but it can 
be dramatically more efficient to compute when there are many factors [40].

Table 1 displays the statistical results of different models. We 
selected the model with the best statistical performance. The best model 
was PLS model with six latent variables in Table 2 that selected on 
the basis of the highest squared correlation coefficient (R2), Equation 
3, cross-validated squared correlation coefficient (Q2), Equation 5, 
and simplicity and interpretability of the model. The most popular 
measures of how well a model fits the data are probably the mentioned 
above parameters. The R2, Q2 and RMSEC (Root mean square error of 
Calibration) (Equation 6) for training set were (0.77, 0.61, 0.49) and R2, 
and RMSEP for test set were (0.73, 0.61), respectively.

cal obs 2
i i2 i

obs mean 2
ii

(y -y )
R =1-

(y -y )
å
å

(4)

obs 2
i i2 i
obs mean 2
ii

(y -y )
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predå
å

                   (5)

cal obs 2
i ii
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N
å   (6)

RMSEP (Root mean square error of prediction) is calculated exactly 
as in Equation 6 except that the estimates ycal are based on a previously 
developed model, not one in which the samples to be ‘predicted’ are 
included in the model building.

Model validation

The final generated QSAR model was validated on the basis of an 

Method R2
cal Q2 R2

pred RMSEC RMSECV RMSEP
PLS 0.77 0.61 0.73 0.49 0.66 0.61
SVM 0.79 0.50 0.79 0.01 0.73 0.50

Table 1: Statistical results of different methods for correlation log kp to grind 
descriptors.

LV R2
cal Q2 R2

pred RMSEC RMSECV RMSEP
1 0.35 0.31 0.57 0.84 0.86 0.84
2 0.51 0.42 0.67 0.73 0.79 0.73
3 0.69 0.54 0.67 0.58 0.71 0.74
4 0.72 0.58 0.71 0.54 0.67 0.64
5 0.75 0.61 0.75 0.51 0.65 0.6
6 0.77 0.61 0.73 0.49 0.66 0.61

Table 2: Statistical results of PLS models for the first 6 LVs.
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external test set consisting of 60 compounds with known experimental 
log kp values but was not used in the training set. In addition to the 
external validation, the model was further optimized by an internal 
validation. Leave-one-out cross-validation is a particular case of k-fold 
cross-validation where k equals the number of instances in the data. In 
other words, in each repetition nearly all the data except for a single 
observation are used for training and the model is tested on that single 
observation [41,42].

In PLS modeling, we assume that the investigated system or process 
actually is influenced by just a few underlying variables, latent variables 
(LV’s). The number of LV’s is usually not known. This number is 
generally chosen by cross-validation considering the proportion of 
variations explained by each latent variable [34]. Figure 1 reveals that 
six LVs were found to be significant for internal validation using cross-
validation (Q2=0.61). The plot of experimental and predicted log kp 
values for PLS model is shown in Figure 2. In this figure the red trace is 
1:1 line (the best fit mode) and the purple line is the fit (regression) line 
which shows the R2 train (calibration set) value.

Support vector machine (SVM) is a classification algorithm, which 
has been widely used in machine learning and in silico prediction 
because of its remarkable versatility. The theory of SVM is detailed 
in several excellent sources [43,44]. The key point of SVM is kernel 
transformation that is a projection of the descriptor matrix from the 
input space into a high dimensional feature space. In this study, we used 
the radial basis function (because such kernels are standard and well 
used) and the option called epsilon-type regression (eps-regression) 
and gamma. We used default settings for all tunable parameters in 
the SVM function. The primary values for ε was 0.1 and for γ 0.0001. 
The plot of experimental and predicted log kp values for the SVM 
model is shown in Figure 3. In comparing the two models, significant 
differences between statistical parameters by linear PLS and nonlinear 
SVM, based on the same input variables, were not observed. The 
predicted values were listed in Table 1 for both PLS and SVM models. 
All calculations were performed in the MATLAB and the PLS Toolbox 
5.8.2 (Eigenvector Research, Inc., Manson, Washington, USA) media.

Applicability Domain (AD)

A predicted value without an idea of the reliability of the value 
is not useful when you have a new compound with no experimental 
data. Therefore, in order to use a QSAR model for evaluating new 
compounds, its domain of application needs to be defined. Only those 
predictions that lie within this domain may be considered as reliable.

The extent of extrapolation is a simple measure to define the 
applicability domain. It is based on the calculation of the leverage hi for 
each compound, where the QSAR model is used to predict its activity. 
The leverage of a compound is a measure related to the statistical error 
of prediction of that compound. Equation 7 shows the leverage for 
objects in the PLS model as follow:

( )-1T T
ii i ih =t × T ×T ×t                   (7)

where hii leverage of the ith sample is the ith diagonal element of the 
scores matrix T which is truncated according to number of significant 
factors. The studentized residual can be calculated by Equation 8;

i
i

ii

e
r = i=1,2...n

RMSEC 1-h
			              (8)

Where ei the residual of the ith object and the RMSEC is presented 
in Equation 6.

A leverage value hi>2 (k+1)/n is considered large where k is the 
number of model parameters plus one and n is number of training set 
molecules. This criterion means that the predicted response is the result 
of a substantial extrapolation of the model and may not be reliable [45-48].

In the present case, the training descriptor matrix X was of order 
150 × 118 and thus the threshold leverage value was 0.09. The results 
indicate that out of the 60 test compounds (not present in the training 

Figure 1: SIMPLS variance captured versus latent variable number.

Figure 2: The plot of experimental and predicted log kp values for PLS model.

Figure 3: The plot of experimental and predicted log kp values for SVM model.
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set). Thus, 90% of the test compounds are within the applicability 
domain indicating that their predicted activity values are reliable. The 
analysis of the applicability domain of the PLS model based on GRIND 
descriptors displayed in Figure 4. As obvious, there is 10 chemical 
outlier or structure influential compound in the training set and 12 
chemical outlier in the testing set. compounds such as Sucrose (M200), 
Raffinose (M195), Hydrocortisone succinate (M122) and Ouabain 
(M178), in training set due to their high molecular weight and having 
strong alcoholic, etheric and ester groups, caused the lack penetration, 
and then these compounds, according to the application domain, are 
outlier and more than h* which helps us eliminate these compounds 
to build of the better model. The Ouabain (M178) is the most inactive 
molecule in the penetration, and the Williams plot is well illustrated 
and depicted it as a distorted compound.

It is also important to note that the validation chemicals, which 
were not used for model development, are predicted with similar 
accuracy as the training chemicals. It was found that majority of these 
compounds have moderate and high permeation level. It is believed 
that keeping these samples in the training set could significantly worsen 
the model statistic and they should be deleted from the training set 
[49]. However, it has been discussed that such compounds may hold 
unique information, which makes the model more precise and that 
their removal should be carefully considered [50]. Figure 4 reveals the 
presence of just one chemical outlier M204 (thymol) with studentized 
residual more than standard deviation units (>3 s) that were considered 
as y outlier but incorrect within the model domain.

Descriptors interpretation

Analysis of the PLS coefficients profile of the GRIND model allows 
identifying those descriptors which exhibit the largest contribution to 
the model. Figure 5 shows the PLS coefficient plot indicated the most 
important pairs of nodes that contribute negatively or positively to 
the permeation in pentacle with 740 descriptors. A first inspection of 
the PLS coefficients plot enabled us to select some X variables with the 
highest impact on the Y variable.

The PLS coefficient histogram showing the contribution of every 
single variable to the model versus the value of Y (118 descriptors) is 
shown in Figure 6. Positive values of the coefficients represent a direct 
correlation to the Y, and the negative ones show an inverse correlation 
to it. As can be seen, the most important variables that have a positive 
effect on the permeation activity are O-TIP: 606,607 N1-N1: 170, O-O: 
104, and DRY-DRY: 20, 21. In contrast, the analysis of all the distances 
at higher PLS coefficients revealed that the variables TIP-TIP: 231, 
O-TIP: 634 and DRY-TIP: 462 correlate negatively with the permeation 
activity. In the other word, these probes are participating most in
explaining the variance in the permeation activity values (Figure 6).

The largest peaks were related to the TIP probe (correlograms 
O-TIP, TIP-TIP, and DRY-TIP), which represent shape and size of
the molecules suggesting that size and shape of the molecules likewise
presence and orientation of hydrogen bond groups were determinant
for the penetration of the skin. The next effective peaks were related to
the O probe correlograms (O-O, O-TIP, and O-N1), which represent
bond acceptor groups of the molecules whereas N1 and DRY probes
showed significant peaks also.

In the primary analysis, in addition to the shape and size of the 
molecular orientation of the hydrogen bond, it is essential to penetrate 
these compounds. To get deeper results for the QSAR model, the 
variables with the highest impact on skin permeation are shown in 
more detail in Table 3. The chemical interpretation of the model was 

assessed by selecting the twenty most relevant descriptors: three O-N1 
probes, two DRY-DRY probes, one O-O prob, two N1-N1 probes, two 
TIP-TIP probes, one DRY-O probe, two DRY-TIP probes, five O-TIP 
probes, and two N1-TIP probes.

Variable number 77 in extracted PLS coefficient in Figure 6 that 
refers to variable O-TIP 606, with distance: 5.60-6 Å is the largest impact 
on skin permeability with a direct relationship. Great size molecules 
like: M178, M207, M154, and M209 (Ouabain, Triamcinolone 

Figure 4: Plot of studentized residuals versus leverages. Dotted lines represent 
± 3 studentized residuals and dash line represents warning leverage (h∗ ≈ 0.09).

Figure 5: PLS Coefficient plot (All Descriptors).

Figure 6: PLS Coefficient plot (118 Descriptors).



Citation: Rezaei S, Behnejad H, Ghasemi JB (2019) Molecular Modeling Study of the Penetration Kinetic of Diverse Compounds through the Human Skin by Three-
Dimensional Quantitative Structure Activity Relationship. Med Chem (Los Angeles) 9: 065-073.

Med Chem (Los Angeles), an open access journal
ISSN: 2161-0444 Volume 9(6): 065-073 (2019) - 70

acetonide, Morphine and Triglycol nicotinate) with molecular weight 
respectively: (584.73, 434.55, 285.37, 255.3) had the largest value of 
variable 77, but for a medium size molecule like M60 (butyl nicotinate) 
with 179.24 molecular weight has a low value of that variable. For 
example Triamcinolone acetonide has not any significant permeation 
enhancement. This variable demonstrated that the hydrogen bonding 
properties of a compound and shape of the molecules might also 
influence greatly its ability to penetrate through human skin, this 
prob also shown that solute hydrogen bonding acceptor may impede 
diffusion in the stratum corneum. Hydrogen bonding acceptor has also 
been suggested as a determinant of epidermal penetration, with the 
numbers of hydrogen bonds. Furthermore, Figure 7 shows a graphical 
display of variable 77 for the most inactive molecule (M178: Ouabain) 
and active molecule such (M168: n-octanol). Due to possessing 
hydrogen bond acceptor group and shape of the molecule, (M33: 
acetic acid) with (log kp=6.08) strongly exhibits positive interaction 
with probe O-TIP. This descriptor indicates that molecular size and 
the hydrogen bonding capability of a molecule affect its ability to 
permeate of the skin. Figure 8 shows a graphical display of variable 
77 for (M33: acetic acid). We find out from Table 3 that N1-TIP and 
O-TIP cross-correlogram are several variables of high intensity that
have a significant impact on the model.

As N1 probe represents hydrogen bonding (HB) acceptor 
interaction, it is important in compounds with hydrogen bond donor 
group. The graphical display of variable 18 that refers to variable 170 for 
selected compound (M64: Caffeine) was shown in Figure 9. Variable 18, 
N1-N1 at distance of 8.80-9.20 Å, which has a positive correlation with 
permeation constant indicated that the hydrogen bonding capability of 
a molecule affects its ability to permeate the skin. The highest value of 
energy interaction product for the GRIND variable 18 in compound 
64 which is clearly evident in correlogram means that the N1 probe 
interacts more strongly with the nitrogen atom in Caffeine than the 
groups described above.

Variable number 90 refer to O-TIP variable 634 that indicated a 
significant distance of 17.2-17.6 Å between O and TIP nodes, which 
has a negative correlation with inactive compound, As expected this 
variable is not expressed for the most active compound. Figure 10 

No. of variable Prob Distance (A°) Coefficient sign
5 DRY-DRY 8-8.4 +
6 DRY-DRY 8.4-8.80 +
14 O-O 12-12.40 +
18 N1-N1 8.80-9.20 +
27 N1-N1 20.80-21.20 -
29 TIP-TIP 3.60-4 -
30 TIP-TIP 8.40-8.80 -
42 DRY-O 2.80-3.20 -
61 DRY-TIP 6-6.40 -
62 DRY-TIP 7.20-7.60 -
68 O-N1 4.80-5.20 -
70 O-N1 11.20-11.60 +
71 O-N1 14-14.40 +
77 O-TIP 5.60-6 +
78 O-TIP 6-6.40 +
85 O-TIP 14.40-14.80 -
86 O-TIP 15.20-15.60 -
90 O-TIP 16.80-17.20 -

103 N1-TIP 6.80-7.20 +
104 N1-TIP 7.20-7.60 +

Table 3: The most relevant GRIND descriptors.

7a 

7b

Figure 7: Graphical display of GRIND variable 77 (O-TIP: red and green hot 
spot) for the most inactive (M178) and the active (M168).

Figure 8: Graphical display of GRIND variable 95 of the (O-TIP) cross-
correlogram of a selected (M33) compound.

shows a graphical display of variable 90 for the inactive compound 
(M178: Ouabain) and active compound (M168: n-octanol).

Number 6 related to GRIND variable 21 which is a DRY-DRY 
type. The 3D-QSAR model using GRIND descriptors further refines 
this general property and identified two hydrophobic regions (DRY-
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Figure 9: Graphical display of variable 18 (N1-N1: blue hot spot) for selected 
compound (M64).

10a 

10b 

Figure 10: Graphical display of GRIND variable 90 (O-TIP) for the most inactive 
compound (M178) and active compound (M168).

DRY) separated by a certain distance range in all active compounds. As 
expected it has a positive effect because as the guest molecules become 
more hydrophobic, the interaction between them and the hydrophobic 
cavity becomes stronger. This variable indicated a significant distance 
of (8.4-8.80 Å) between DRY nodes which have a positive correlation 
with permeation. This variable was expected to be present in the most 
active compound 205 and has direct interaction between the aromatic 
group and the aliphatic group. This variable is present in a selected 

compound (M61) with a coefficient of permeability of 4.61 as an active 
compound. As expected this variable has any correlation for a selected 
inactive compound (M26: 4-hydroxybenzyl alcohol) with a coefficient 
of permeability of 6.26. According to PLS coefficient plot, most of the 
variable in the DRY-DRY block has a positive impact on permeation 
(Figure 6). At a deeper insight, the presence of hydrophobicity groups 
such as aromatic ring system and long aliphatic chains increases the 
permeability of the compounds. It is well known that DRY probe has a 
high affinity to different types of π systems, aromatic moieties or vinyl 
type. The graphical display of this variable for the selected compound, 
most active compound and selected inactive compound was shown in 
Figure 11.

Molecule 61(butyl p- amino benzoate) with log kp 4.61 and 
molecular weight 179.24 as active molecule with variables 5, 6 (DRY-
DRY), 78(O-TIP) and 103(N1-TIP) have direct effect and positive 
contribution to permeability. These represent the aromatic ring of the 
benzoate ring system and hydrogen bond donor of Amin with other 

11b 

11c 

11a

Figure 11: Graphical display of GRIND variable 23 of the (DRY–DRY: yellow 
hot spot) block for (a) the most active molecule of permeation (M206) and (b) 
the selected compound (M61) and (c) the selected inactive compound (M26).
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Figure 12: Graphical display of GRIND variables 5, 6 (DRY-DRY), 78 (O-TIP), 
103 (N1-TIP) for selected compound (M61).

groups. In the most active compound are separated by a distance of 
8.4-8.80 Å and 6.80-7.20 Å, which is considered optimal according to 
the GRIND model (Figure 12).

According to Figure 6, all O-O interactions demonstrated positively 
related to permeation. GRIND variable 14 which have the strongest 
positive impact on permeability are within the block of O-O node 
pairs. Also this probe demonstrated the presence of hydrogen bonding 
groups has a direct effect on skin permeability.

Conclusion
The work introduced in this paper aimed to compare two different 

methods for multivariate calibration, PLS and nonlinear SVM 
highlighting the underlying algorithm for each and making a modest 
comparison between them to indicate their merits and demerits. The 
results of both models performed an acceptable prediction of the 
model but Values of RMSEP of independent test set (0.61) reveal that 
linear PLS is better than SVM in prediction ability of the future samples 
and shows higher generalization ability. GRIND-based 3D QSAR 
models can give different kinds of information: simple and fast, reliable 
prediction of activity of compounds belonging to the data set and 
chemical interpretation of the obtained results. So, in the present work, 
we investigated the reliability of Grind methodology in predicting 
human skin permeability data of 210 different compounds acquired 
from aqueous donors in various literature reports. The hydrophobicity 
(associated with the DRY probe), shape effects (associated with TIP 
probe), and hydrogen bond acceptor-donor interactions (associated 
with N1 probe) are the main factors that determine skin permeability 
coefficient, within the studied set. GRIND variables, including O-TIP 
(5.6-6.00 Å) and N1-N1 (8.80-9.20 Å), had greater importance on 
permeation constant. We illustrated that the hydrogen bonding 
properties of the investigated compounds greatly influenced its 
ability to penetrate through human skin. We also found that some 
descriptors such as DRY and TIP showed the significant peaks which, 
showed hydrophobicity and molecular size. Furthermore, it was found 
that permeability was enhanced by increasing hydrophobicity and 
decreased with increasing molecular weight.
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