Keywords: Energy; Time; Density; The bell normal; The golden mean parabola

Introduction

This paper is an examination of the mathematics already well-established as the Robust solution. We use this solution applied to the cholera epidemic, particularly in what is toddy, Quebec-Montreal and Quebec City. The data was found in Bilson’s book, A Darkened house, Cholera in nineteenth Century Canada. Some figures come from the Saint John Cholera epidemic 1854 [1-3]. We begin there.

In Saint John, 1854,

1103 deaths from Cholera/pop. 30,000=1/e=e^-t=E

In Quebec 1832-33:

3451/X=1/e

X=1269=rho=density ~ 4/Pi

1269=78.8 deaths/1000.

In Montreal, there was a cholera death rate of 74/1000. In Quebec City, Twas a cholera death rate of 82/1000. Average (74+82)/1000=41/1000 [4,5].

Now rho/c=126.9/2.9979=0.4235 ~ Pi-e=0./4233.=Resistance to Disease=Rd

[Deaths/1000]=rho

Rho/c=cuz

Rho/c* Pi=Space s

And, from Astro-theology mathematics:

The cross-product vector is:

S=|E||t|cos theta

Resistance to death=(Vd) (Cycle)cos (Cycle)

e*(40% of a cycle) cos (1 rad)

=58.75%

58.75%=Pi=54.18%

1-54.18%=45.82% ~ 45.7=death rate in the entire province of Quebec

1-58.75%=41.25%

Cf Average Death rate above=41/1000.

Copyright: © 2017 Cusacki PTE. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\[(1/e)((2.997929)^2) = 3.3063\]
\[E = 1/t\]
\[t = 1/E = 1/3.3 = 0.302\]

Root for the Bell Normal.
\[\Phi = 1/\sqrt{\sigma^2} \cdot e^{-1/2\{(X-1.30)/1.30\}^2}\]

Root X = t = 3.02
\[1/c = Mc^2\]
\[1 = Mc^3\]
\[= 99.125 = 1/1.009 - 1.01 = E\]
\[E = \Phi\]
Roots X = 0, 1.4
\[0 \leq X \leq 1.4\]
\[1 - 0.8599 = 0.1401\]
\[Z = 1.08\]
\[1/81.99 = 116.29 = \text{Mass of final element in periodic table.}\]
\[Y = e^{-t \cos t}\]
\[116.29 = e^{-t} \cos t\]
\[Y = 1/e = E\]

Refer to Figure 1.
\[t^2 = 2 - 1 = 0\]
\[dE/dt = 2t - 1 = 1\]
\[2 = 1\]

\[E = 1/e^t\]
\[E = 1/e^{-t} = 2.718 = Y\]
At t = 0, Ln t = 0
\[t = 1\]
At t = \(\pi\)
\[\ln \pi + \cos \pi = 2.568 - \pi/2 = t/2\]
\[t/2 = 1/2 = \text{Emin} = -1.25\]
And
\[\ln \pi + 0.4233 = 1/e^t\]
\[G = 6.54 = 1/e^t\]
\[e^t = 0.1529 = 1 - \sin 1 = \text{Moment}\]
\[1 - 0.1529 = 0.8471\]
\[\sin^{-1}(0.8471) = 57.89^\circ = 1.01 \text{ rads} = E.\]

Conclusion

Like every other two pole problem (infected or not infected) the two-pole solution works to solve problems in epidemiology. Keeping the growth rate below 14% will terminate a pandemic.

References

OMICS International: Open Access Publication Benefits & Features

Unique features:
- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:
- 700+ Open Access Journals
- 50,000+ editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at major indexing services
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.editorialmanager.com/biobiogroup/