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Abstract
Most brain disorders are caused by a number of pathogenic factors, which lead to the pathological impairment in 

subcellular organelles and compartments. Recent studies indicate that pathological changes in certain brain disorders 
include the incoordination among different nerve cells and the incompatibility among subcellular compartments. In 
this regard, therapeutic strategies for these brain disorders are better to act on multiple molecular and cellular targets 
in order to correct the neuron-specific incoordination and the subcellular incompatibility. The strategy of multi-target 
therapy is expected to be advanced to that of single-target therapy that leads to long-term drug-resistance or drug-
dependence. In this mini-review, we summarize the data about subcellular incompatibility in certain brain disorders 
(such as epilepsy, anxiety and depression) and propose the therapeutic principle of multiple targets for their treatments.
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Introduction
The brain includes the different kinds of neurons and glia cells, 

which constitute neural networks via synapses. Each of nerve cells 
consists of different subcellular compartments. The coordination among 
nerve cells and the compatibility among subcellular compartments are 
critical for the neuron encoding to manage well-organized cognitions 
[1-4]. Their incoordination and incompatibility lead to brain disorders 
[5]. The brain disorder is defined as its dysfunction in the aspects 
of neurology and psychiatry, e.g., mental retardation, epilepsy, 
anxiety, depression, schizophrenia and so on. These brain disorders 
are often caused by multiple pathogenic factors and accompanied 
by many pathological changes in signal pathways and subcellular 
compartments. For instance, genetic alternations are associated with 
epilepsy, depression and schizophrenia [6-11]. Abnormalities in signal 
molecular pathways are observed in depression and schizophrenia [12-
16]. These molecular alternations induce neuron atrophy and synapse 
dysfunction in many brain regions through impairing subcellular 
organelles, leading to major depression, schizophrenia and mental 
illness [17-26]. In these regards, therapeutic strategies to such brain 
disorders should be to correct the abnormality in multiple genes, 
signal molecules and subcellular organelles. Recent reports imply that 
neuronal incoordination and subcellular incompatibility are associated 
with certain brain disorders. The incompatibility among subcellular 
compartments occurs in epilepsy and depression [27,28]. The 
incoordination in excitatory versus inhibitory synapses is associated to 
epilepsy, anxiety and depression [4,29,30]. Therefore, the corrections 
of the neuronal incoordination and subcellular incompatibility should 
be also considered in multi-target therapy. In this mini-review, we will 
summarize the pathological characteristics of neuronal incoordination 
and subcellular incompatibility in some brain disorders as well as 
propose their therapeutic strategies.

Neuronal Incoordination in Epilepsy
It is suggested that the coordination between excitatory and 

inhibitory neurons as well as the compatibility among subcellular 
compartments in the cerebral cortices may grant endogenous 
mechanisms for seizure self-termination [5], such as function 
compatibility between presynaptic and postsynaptic partners 
and activity-induced spontaneous spikes [4,31,32]. The neuronal 
incoordination and subcellular incompatibility lead to the synchronous 
discharges in a population of excitatory neurons, i.e., seizure activity 
for epilepsy. The compatibility should be maintained in the divergence 

units, in which each neuron in the brain sprouts many axon branches 
that innervate their correspondent target neurons. Axonal branches 
from this neuron propagate somatic spikes to drive their diversified 
postsynaptic neurons [33,34]. The activity diversities of postsynaptic 
neurons require the functional states of their presynaptic axon 
branches to be differentiated in order to constitute the compatible 
partnership between presynaptic axon branches and postsynaptic 
neurons, i.e., a functional compatibility between presynaptic and 
postsynaptic partners. In other words, each neuron uses its axon 
branches as the fractional diverters to regulate its postsynaptic neurons 
appropriately. This hypothesis has been examined by a current report 
[4]. The axon branches from a neuron propagate its somatic spikes, in 
which their frequencies are differentially weakened due to propagation 
failure. Their innervated postsynaptic partners produce spikes with 
different abilities. The presynaptic axon branches with high spike 
propagation ability innervate the postsynaptic neurons with the high 
spike production ability, or vice versa (Figure 1). The spiking ability 
between presynaptic and postsynaptic partners is linearly correlated. 
Moreover, the release probability of presynaptic transmitter is linearly 
correlated with the sensitivity of postsynaptic receptors [4]. Thus, there 
is the functional compatibility between presynaptic and postsynaptic 
partners. In terms of physiological impact, postsynaptic neurons may 
set spike ability in their presynaptic axon branches making themselves 
be activated properly. Their compatibility prevents the situations that 
active axons act onto inactive neurons leading to ineffective energy-
cost as well as inactive axons cannot drive active postsynaptic neurons 
to form the silent partner. These situations lead to seizure discharges in 
a population of neurons [4,5]. A therapeutic strategy to arrest seizures 
is to rebalance the functional compatibility between presynaptic and 
postsynaptic partners. 
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Excitatory neurons and inhibitory neurons interact each other 
to maintain the balance of neuronal networks [1,5]. The excitatory 
neurons activate the inhibitory neurons that inhibit the excitatory 
neurons by feedback and feedforward. When a population of excitatory 
neurons are overly active, their persistent activities are able to induce 
spontaneous spikes in the inhibitory neurons [31,32]. The activity-
induced spontaneous spikes (AISS) will suppress over-excitation in 
a population of excitatory neurons to terminate seizures. As AISS 
depends on the activation of voltage-independent sodium channels 
on the axon of inhibitory interneurons [31], one of the therapeutic 
strategies to arrest seizure can be done by facilitating the activation 
of voltage-independent sodium channels. Based on two examples 
about endogenous mechanisms in different subcellular compartments 
and neurons for seizure self-termination, the multi-target therapy 
in neuron-specific manner should be used to treat epilepsy. This 
strategy is advanced, compared with present antiepileptic medication 
by strengthening GABAergic synaptic transmission or weakening 
neuronal action potential [35], in which epileptic patients become 
insensitive to these medications [36,37]. The mechanisms for this 
drug-resistance may result from the chronic compensatory change 
of cellular responsiveness to these drugs. For example, long-term 
blockade to voltage-gated sodium channels enhances neuronal spiking 
ability [38]. The long-term use of GABAA receptor agonists leads to 
receptor desensitization [39,40]. In addition, the lack of long-term 
medical effectiveness may result from a fact that these drugs to arrest 
epilepsy are not neuron-specific. The effects of GABAAR agonists and 
sodium channel blockers on both excitatory and inhibitory neurons 
do not alter their relationships to shift hyper-excitation toward hypo-
excitation in neural networks.

Subcellular Compartment Incompatibilities in 
Depression

Major depressive disorder is featured as anhedonia, low self-esteem 
and suicide. Sustained stress to the genetically susceptible individuals 
leads to dysfunctions of monoamine, brain-derived neurotrophic 
factor and hypothalamus-pituitary-adrenal axis [12,41,42], which 

induce the atrophy of the neurons and synapses in brain reward 
circuits [19,21]. Because monoamine acts on the presynaptic and 
postsynaptic membranes of excitatory synapses to potentiate their 
signal transmission [43], these pathological alternations are expected 
to be improved by raising monoamine in synaptic clefts with serotonin 
reuptake inhibitor, non-adrenaline reuptake inhibitor or monoamine 
oxidase inhibitor [17,44]. However, the response of depression 
patients to this therapy shows the delayed onset for weeks [45]. Other 
pathological mechanisms and therapies need to be elucidated. Recent 
data indicate that major depression subjects possess the decreased 
density of GABAergic neurons in the prefrontal cortices [46-48] and 
the lowered tone of GABAergic transmission in the brain [49,50]. Such 
changes may be caused by chronic stress. For instance, stress hormones 
affect the function of GABAA receptors [51,52] and reduce the density 
of GABA receptors [53,54]. GABAA receptor enhancers are used to be 
antidepressants, however, there is controversy in therapeutic outcome 
[55-57]. To this issue, we hypothesize that there are incompatible 
changes in the sub-compartments of GABAergic neurons and synapses, 
e.g., presynaptic GABA release versus postsynaptic GABA receptors 
and the outputs of GABAergic neurons versus their reception from 
excitatory inputs.

Our study indicates that the output and excitability of GABAergic 
neurons in the prelimbic cortex from depression-like mice decrease 
and that their reception from glutamatergic inputs rises [28]. 
These decreased outputs and increased receptions in GABAergic 
neurons may result from that stress-induced primary dysfunction 
in GABAergic neurons initiates unknown mechanism to enhance 
their sensitivity and reception from excitatory input, a compensatory 
process among subcellular compartments for neuron survival [3]. The 
decreased presynaptic GABA releases and the increased postsynaptic 
GABAA-receptor responses indicate a homeostasis within GABAergic 
synapses [28], which explains a controversy in the use of GABA-
receptor enhancers as antidepressant [58]. The compensatory changes 
among subcellular compartments tend to maintain functional 
homeostasis in these GABAergic neurons and synapses. On the other 
hand, the incompatibilities among subcellular compartments as 
well as between presynaptic and postsynaptic partners may result in 
neuronal interaction and synaptic transmission to be inefficient, which 
constitute neural substrates for depressive disorder. The rebalance 
of their compatibility should be considered as one of therapeutic 
strategies, since the coordination and compatibility among subcellular 
compartments are present under the physiological conditions [3,4]. 
Testable strategies for major depression treatment are given in Figure 2.

Subcellular Compartment Incompatibility in Anxiety
Anxiety is characterized as unstable mood, negative interpretation 

and social phobia. The defect of many genes is presumably associated 
with anxiety [59-61], which leads to pathological changes in serotonergic, 
GABAergic and glutamatergic synapses in the limbic system [29,62-65]. 
Selective serotonin reuptake inhibitors or GABA receptor enhancers 
have been used to treat anxiety [66,67]. Their effectiveness remains to be 
reevaluated due to drug resistance and unfavorable side-effects [68-71]. 
Therefore, multi-target therapy is expected to be used to treat anxiety. 
The incompatibility has also been observed in excitatory synapses and 
inhibitory synapses on the glutamatergic neurons in the prefrontal 
cortex from anxiety mice. For instance, the decreased probability of 
GABA release from presynaptic inhibitory neurons is associated with 
no change in the sensitivity of GABAA receptor in postsynaptic neurons 
[65]. The increased efficacy of excitatory synapses is associated with 
the decreased density of excitatory synapses on glutamatergic neurons 

Figure 1: The functional compatibility between presynaptic axon branches 
and postsynaptic nerve cells. A neuron sprouts axon branches to innervate 
the different postsynaptic neurons. Somatic sequential spikes in this 
presynaptic neuron (blue) are propagated to its branches (blue versus dark-
blue), where the spikes are propagated differently. The axon with a high 
ability of propagating spikes (dark-blue) terminates onto the postsynaptic 
neuron with a high ability of producing somatic spikes (red). The axon with 
a low ability of propagating spikes (blue) terminates onto the postsynaptic 
neuron with a low ability of firing somatic spikes (orange).
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[29]. In spite of this compensatory homeostasis at the excitatory and 
inhibitory synapses, the incompatibilities between presynaptic and 
postsynaptic compartments or between synaptic efficacy and synapse 
density lead to inefficient functions at these synapses. The rebalance of 
subcellular compartment compatibility at these synapses should also be 
an ideal strategy for anxiety treatment.

Conclusions
Based on these data, the brain disorders, such as epilepsy, 

depression and anxiety, are caused by many genes and signal molecules, 
and are accompanied by incompatibility among different subcellular 
compartments. The strategies of multi-target therapies are required 
for their treatments, but the medications for these brain disorders 
are variable since their pathological changes are different. With this 
strategy, the dosages of multiple drugs can be reduced to prevent drug 
resistance, dependence and side-effects. Whether multi-target strategy 
is used to treat other neurological and psychiatric disorders should also 
be considered once they are proved to be caused by the dysregulation 
of multiple molecules and the incompatibility among subcellular 
compartments. It should be pointed out that the correct diagnosis of 
the brain disorders is important for the proposed therapies and that 
their effectiveness and duration need to be evaluated in terms of the 
variability of individual patients in their responses to multi-target 
therapies, i.e., the combination of personalized medicine (or precise 
medicine) and multi-target therapy.

It is noteworthy that the medications in traditional Chinese 
medicine [72] are similar to this multi-target therapy, in which each 
of the herbs presumably plays major or minor roles in treating the 
given diseases. Numerous natural compounds included in herbs act 
to different targets, such as receptors, enzymes and signal pathways. 
However, their targets remain unclear. A combination of this multi-

target strategy with the compounds whose action targets are precisely 
defined should shed light on future direction for the therapy of various 
diseases. The therapeutics of brain disorders will be benefited from 
developing the compounds with precise targets and the strategies for 
their combined usage based on the multiple pathogenic factors and 
pathological alternations in subcellular incompatibility.
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