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Introduction
Bone and cartilage tissue defects can be caused by bone tumor, 

osteomyelitis, periodontitis, and heavy traumatic fractures or 
by increasingly frequent osteochondral degenerative diseases 
(osteoporosis, arthrosis…) particularly in the developed countries 
due to population ageing [1,2]. Osteochondral defects are critical and 
difficult clinical problems in orthopedic surgery and impose a growing 
burden on society, in terms of human costs (pain, loss of mobility, 
morbidity), or social welfare costs (treatment, rehabilitation and sick 
leaves). 

Despite the overall capacity of bone to regenerate, bone defects 
can be long, difficult or even sometimes impossible to heal if the 
defect reaches a critical size or is originally caused by an impaired 
capacity to regenerate. Contrary to bone, cartilage tissue has very 
little to no capacity to heal, due to its avascular nature, and to the 
chondrocyte low population density, impaired migration and 
proliferation [3-5]. Therefore, the development of biomaterials and 
implementation of tissue engineering techniques are necessary to 
treat these defects, by promoting and accelerating bone and cartilage 
tissue regeneration. To efficiently support and direct cells towards 
new osteochondral tissue formation, such biomaterials scaffolds need 
to mimic the tissue extracellular matrix (ECM) at the microscopic 
and nanoscopic scale. Recently, regenerative medical research has 
particularly focused on improving the scaffold biocompatibility using 
innovative nanostructures such as nanogrooves [6,7], nanofibers 
[8,9], carbon nanotubes [10,11] and graphene [12-14] allowing better 
cells’ adhesion, organization and morphology and exhibiting other 
interesting properties (electrical conductivity [8], cell force biosensors 
[15], detoxification [16,17]). Nanotechnologies can also be used to 
improve the scaffold bioactivation (nanoparticles, nanoreservoirs, 
protein adsorption…) allowing a better spatial or chronological release 
control over the bioactive agent (growth factors, cytokines…) [18,19].

Bone and Cartilage Structure and Function
Bone main function is to provide rigidity to the body but also 

mineral ion homeostasis and protection for hematopoietic and 
progenitor cells. To obtain rigidity with minimal weight, bone presents 
a hierarchized architecture, from the molecular scale, with collagen 
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Abstract
In the last decade, regenerative medicine has benefited from the exponential development of nanomaterial 

sciences, tissue engineering and cell-based therapies. More and more sophisticated designed structures and surface 
topologies are being developed to basically mimic the extracellular matrix of native tissues such as cartilage and 
bone. Here we give an overview of the progress made in osteochondral lesion repair, with nano-engineered scaffolds 
comprising building blocks such as nanoparticles, nanotubes, layer-by-layer nano-assemblies, molecular self-assembly, 
nanopatterned surfaces…. This nano-engineering technology is coupled with bio-functionalization, by the use of 
adhesion peptides, growth factors, or deoxyribonucleic acid, to drive cell adhesion, proliferation and behavior towards 
tissue regeneration. In osteochondral regeneration, the challenge is the simultaneous development of chondrocytes 
and cartilage extracellular matrix on the one side and a well vascularized bone tissue with osteoblasts on the other side.

type I molecules (90% of the bone matrix protein) and apatite crystals 
organized, at the nanoscale, into mineralized collagen micro-fibrils and 
fibers. Those fibers are themselves organized at the microscopic scale 
into the cortical bone osteons’ concentric lamellae or organized into 
trabecular bone beams. Those cortical and trabecular bone tissues form 
respectively the strong shell or the filling of epiphysis cavities at the 
bone organ scale [20].

Bone mechanical properties depend not only on its macroscopic 
geometry (cortex thickness and moment of inertia, trabecular bone 
volume) but also on the bone tissue intrinsic properties [21] which 
strongly depend on the porosity and mineralization at the millimeter 
scale [22]. However, bone microscopic and nanoscopic structures play 
also an important role on its toughness [23,24]. Bone also exhibits 
anisotropic and heterogeneous elasticity at the microscopic scale 
[25,26] as well as a weaker influence of mineralization [27]. This points 
out a greater contribution of bone nanostructures to its mechanical 
behaviors, which is still not fully understood. 

Hyaline articular cartilage plays an extremely important role in 
the osteo-articular system, allowing frictionless sliding and excellent 
congruency between articular surfaces and protecting the subchondral 
bone from impacts and compressive loads. Cartilage presents a fibrous 
ECM made of collagen type II, proteoglycans, glycoamino glycans 
(GAG) and water with no vascularization and a low chondrocyte cell 
density (1% of the tissue volume) [28]. Cartilage ECM exhibits an 
inhomogeneous and anisotropic structure with four distinct zones: 
a superficial zone with dense layer of fibers parallel to the cartilage 
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surface and resisting the shear forces, a transitional zone with randomly 
oriented collagen fibers and proteoglycans, a thick middle zone with 
a high proteoglycans density and large collagen fibers perpendicular 
to the surface allowing a strong fixation into the basal layer of 
mineralized cartilage zone [4]. Variation of tissue density, composition 
and orientation of the fibers throughout the cartilage thickness and 
the complex interaction between collagen, proteoglycans and GAGs 
give a soft, porous, permeable but resistant ECM able to bare high 
compressive loads. 

Unlike other tissues like bone, cartilage does not heal and the 
degradation etiology is still not understood [29]. Some mechanical, 
chemical and cellular causes of superficial cartilage lesions have been 
identified but a major role of the subchondral bone has been highlighted 
on the initiation or the propagation of the failure [30,31]. A superficial 
lesion can cause a thickening of the subchondral bone deeper, which 
exacerbates the superficial defect and induces joint destabilization and 
extreme pain [31]. In fact, cartilage and subchondral bone should not 
be considered separately but as a unique and complex osteochondral 
entity and therapy should treat both to obtain long term restoration 
of the joint.

The current technique to treat bone and cartilage defects is to 
perform autologous grafts using the patient bone (usually from the 
iliac crest) [1,2] and small cylindrical tissue plugs from unaffected 
cartilage (mosaicplasty) [3,31]. Autograft implantation has however 
serious drawbacks (heavy surgical procedures, patient’s pain and site 
morbidity, infection risks and limited tissue volume available). Use 
of allograft is an alternative but increases the patient’s risks (graft 
immune rejection and donor’s disease transmission) while providing 
a limited efficiency (increased graft resorption) [1,2]. Rather high rates 
of failure were reported for both types of grafting (13-30% and 25-
30% respectively) [1]. Alternative ways from material and life sciences 
were developed using artificial implants to treat the defects. First, 
orthopedic therapies aimed to restore the bone and cartilage functions 
with orthopedic prostheses initially inert and then bioactivated to 
improve biological integration. Then, more recently, tissue engineering 

attempted to regenerate new tissues by use of biomaterials scaffolds 
eventually coupled with cell-based therapy. Replacement and 
regeneration of the osteochondral tissue constitute a major challenge 
in modern regenerative medicine and require the development of 
biomaterials mimicking the microscopic and nanoscopic features 
of the osteochondral tissue ECM using nanostructures (nanofibers, 
nanotubes or nanopatterned surfaces) and incorporating bioactive 
molecules (cytokines, growth factors) in order to improve cell 
adhesion, proliferation and to orientate their behaviors towards tissue 
regeneration as illustrated in the Figure 1.

Biomaterials and their Design for Bone and Cartilage 
Regeneration

In order to quickly and satisfactorily repair the bone and cartilage 
defects, several requirements must be fulfilled in the biomaterial at the 
macro-, micro- and nanoscale. The biomaterial must be biocompatible 
and biodegradable while presenting sufficient mechanical properties to 
temporarily perform the native tissue functions and support the cells 
during the formation of the new tissue [32]. The implant must also be 
osteochondro-conductive and osteochondro-inductive, promoting cell 
optimal organization and behavior (adhesion, proliferation, migration, 
differentiation and gene expression) towards the construction of 
bone and cartilage ECM and the regeneration of the native tissues [1-
3,5,32,33].

The implants intend to mimic the native tissue feature presenting 
a three dimensional microstructure to support the cells. 3D scaffolds 
and hydrogels have been shown to promote a more natural cell 
behavior (differentiation, gene expression, ECM fabrication) and 
tissue organization than 2D implants [4,8,29,34]. For example, 
autologous chondrocyte implantation (ACI) procedure consisting in 
injecting patient’s chondrocytes in articular defects and covering it 
with a periosteum or collagen membrane, gave mixed results with often 
apparition of fibrous cartilage tissue instead of hyaline cartilage. The 
technique evolved towards a Matrix-induced ACI with chondrocytes 
grown within a 3D scaffold, and presented better results on the long 

 
 
 
 
 
 
 
Biomaterial scaffold 
 

Regenerative medecine 
Replace tissue 

functions 
Promote new 

tissue formation 

Microscopic 
properties 

Macroscopic 
properties 

Mechanical  
properties 

Nanoscopic 
properties 

Adult chondrocytes or osteoblasts  

Implant fixation 
shape 

In situ cell colonization 
Tissue engineering 

Pore size and 
interconnectivity 

Multiphase structure 

 Nanofibres 
Nanopatterned surfaces 

Carbon nanotubes 

 Nanoparticules 
Nanoreservoir 

Complexe microspheres 

Bioactivation 

Cell adhesion 
Cell proliferation 

Cell differentiation 
Cell protein expression 

Adult and foetal stem cells 
(bone marrow, synovial membrane, 

umbilical cord blood, amniotic  
liquid…) 

Growth factors 
 

Protein adsorption 
 

Biodegradation Biocompatibility 

Composition 

Polymers (natural, 
synthetic) 

Bioceramic 

Figure 1: Illustration of scaffold nanostructural properties requirements for successful osteochondral tissues regeneration.
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term. [3-5,31] Another requirement is scaffold high micro-porosity 
with optimized pore dimension (200-400 μm) and interconnectivity to 
allow the cells to migrate inside the scaffold and to allow the diffusion 
of nutriments and wastes [2,34]. 

For the last twenty years, scaffolds and hydrogels developed 
were either made of natural polymers (collagen, alginate, chitosan 
(CHI), hyaluronic acid, silk…) or synthetic polymers (poly(L-
lactic) acid (PLLA), polyglycolic acid (PGA), polycaprolactone 
(PCL), poly(lactide-co-glucolide (PLG), poly(ethylene oxide) 
(PEO),…) [1-4,29,35,36]. Although natural polymers allow to build 
biocompatible and biodegradable scaffolds with excellent cell-matrix 
interaction, some concerns have been raised about the molecule 
amount availability and composition variability, about the degradation 
rate control and the possibility of immune response [36]. On the 
contrary, synthetic materials are easier to obtain in a reproducible way 
and have predictable and tunable properties [2,35] but have usually 
poor bioactivity and low mechanical properties. On the other hand, 
other materials such as calcium phosphates (hydroxyapatite (HA), 
β-tricalcium phosphate) and bioglass present good osteoconductivity 
and rigidity but are considered as fragile [37-41]. To overcome 
their limitations and combine their advantages, polymers and bio-
ceramics have been combined to form microporous biocomposites 
for bone regeneration purposes [32,35,42-44]. A review of the scaffold 
manufacturing techniques can be found in Lee et al. [34] and Rezwan et 
al. [35]. Multiphase scaffolds have also been investigated to mimic the 
stratified structure and mechanical properties of the osteochondral unit 
by varying the polymer composition, the bioglass or HA incorporation 
and the phase porosity [45-48].

Nanostructured Biomaterials
In the last ten years, nanotechnologies have emerged as powerful 

tools to better mimic the nanostructure of the bone and cartilage ECMs 
and therefore to better drive the cells behavior. As cartilage and bone 
ECMs are made of nanoscopic fibrils and crystals, a first approach was 
to provide biomaterials with surfaces presenting nanotopographic 
features which improve interactions with the cells [8-10].

Nanopatterned surfaces and nanotubes

Due to a very high surface to volume ratio, surface nanoscopic 
features such as nanogrooves, grating, surface roughness, nanopits, 
etc., engineered using nanolithography, chemical vapor deposition, 
electrochemical etching, oxidative nano-patterning etc., have 
been shown to improve the surface protein adsorption, cell 
adhesion, osteogenic differentiation and behavior [6,7,11,49-54]. 
Nanotopographic surface enhancement can also be found in the form 
of nanotubes (carbon, titanium, tantalum) deposited inside scaffolds 
or implant surface [8-10,55]. For example, titanium implants coated 
with carbon nanotubes (CNTs) exhibited an excellent in vivo osteo-
integration with bone tissue growth, mineralization and no sign of 
inflammation [56]. As well, titanium oxide (TiO2) and tantalum 
nanotubes were shown to promote osteoblasts viability, elongated cell 
morphology (compared to spread cells on flat surface) and osteogenic 
activities (alkaline phosphatase ALP, mineralized bone nodules) [57]. 
Anodized TiO2 nanotubes were also found to be chondrogenic with 
production of a dense ECM with GAGs and collagen type II when seeded 
with chondrocytes [58]. Nanotubes integrated within a nanocomposite 
made of CHI nanofibres, and apatite nanocrystals exhibited improved 
surface hydrophilicity, osteoblast adhesion and proliferation in vitro 
[59]. Recently, a renewed interest has been developed upon the carbon 
mono-layered graphene and its variants (graphene oxide, GO) [60] due 

to its good biocompatibility [61] but also its possible uses as biosensors 
[55,62-64]. Graphene can be used in different forms (monolayer 
nanoplatelets, nanoribbons, nanotubes) and can easily be integrated 
within the cells showing excellent capacity as drug delivery carrier 
[65,66]. Graphene oxide can be also integrated within biomaterials to 
improve the osteogenic differentiation of the cells. Depan et al. [14] 
described the synergic effects of a HA-graphene oxide-CHI hybrid 
on MC3T3-E1 pre-osteoblasts cells, promoting the cells adhesion, 
proliferation, osteogenic differentiation and mineralization. As well, 
Nayak et al. [13] described an efficient osteogenic differentiation of 
human mesenchymal stem cells cultivated on graphene coated surfaces.

Nanofibrous scaffolds

Nanofibrous scaffolds have been particularly investigated due 
to their ability to mimic the ECM nanofibres of bone (collagen I) or 
cartilage (collagen type II, hyaluronic acid, GAGs…) and have strong 
osteogenic and chondrogenic properties when fibers diameter is less 
than 1 μm [9]. Nanofibrous scaffolds can be manufactured by self- 
assembly, electrospinning and phase separation techniques [59,67-73]. 
Molecular self-assembly consists in the spontaneous organization of 
the molecules such as collagen [74,75], or peptide amphiphiles [72] 
under thermodynamic equilibrium conditions. Using this technique, 
Lee et al. were able to produce peptide amphiphile nanofibres 
cleverly bioactivated with bone morphogenetic proteins BMP-2 (see 
bioactivated scaffolds paragraph below) and to obtain excellent in vivo 
bone defect regeneration [72]. Other similar self-assembly constructs 
have displayed many binding domains for growth factor TGF-β1, 
resulting in chondrogenesis from mesenchymal stem cells and cartilage 
regeneration in a rabbit model [76]. Self-assembling amino-acids 
forming β-sheets were used by Liu et al. leading to chondrocytes growth 
and hyaline cartilage production [77] and chondrocyte differentiation 
from bone marrow stem cells [78]. However, these synthetic peptides 
may lack proper cell adhesion sites, which have to be added, and 
they can induce local acidic pH due to hydrolysis, with possible 
inflammatory reaction [79]. Nanofibrous scaffolds can also be obtained 
by thermally induced phase separation (TIPS) when a polymer solution 
is made thermally instable leading to a polymer rich phase solidifying 
while the solvent rich phase is removed. Wei et al. [71] obtained 90% 
porous nanofibrous PLLA scaffold with bound HA nanocrystals and 
showing four times more protein adsorption than flat surfaced scaffold. 
Associated with particle leaching technique, Woo et al. [73] and Sachar 
et al. [69] investigated respectively a PLLA and gelatin 3D nanofibrous 
scaffold seeded with osteoblasts and observed an osteogenic behavior 
with long shaped cells and aggregation, osteoblastic genes expression 
(collagen, bone sialoprotein, osteocalcin, integrins…), matrix 
deposition and mineralization.

The electrospinning technique consists in inducing high static 
electrical charges on the molecules of a polymer solution until the 
applied electrical forces cause the liquid to stretch and form a polymer 
continuous jet. The solution jet evaporates, solidifies to form a fiber 
and is then collected as a randomly oriented nanofibrous matrix on 
a grounded collector. Nanofibres dimensions can be down to the 
nanometer size and can be orientated by various collector designs: 
collector grids, rotating rod collector, electrode collector systems, 
fluids… Electrospun nanofibrous matrices do not display large pores 
and are not very thick due to the slow fiber production rate which imply 
the use of combined techniques (hydrogels, rapid prototyping, salt 
particles leaching…) [67]. The electrospinning technique is however 
extremely popular and has been widely used for osteochondral scaffolds 
investigations [8]. Numerous natural polymers (collagen [80], CHI 
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[81], silk [82]) and synthetic polymers (PCL [68,83-86], polyurethane 
[87], PLA [88]…) have been investigated to make osteogenic 
electrospun nanofibrous scaffolds, with success [55]. Incorporation 
of HA nanocrystals [80,87], carbon nanotubes with electrical current 
[88], mixed polymers [82,89] or micro-nano combined structures 
[90] have been also investigated in order to improve the mechanical 
properties and cell adhesion, proliferation and differentiation. By 
varying the fiber size and orientation and using porogens, McCullen et 
al. [84], Accardi et al. [85] and Steele et al. [86] attempted to replicate 
the multiphase zonal structure of the cartilage tissue. The anisotropic 
multiphase nanofibrous matrices obtained exhibited better mechanical 
properties (compressive and tensile) compared to randomly oriented 
nanofibres [84] and shear damages observed were related to the shear 
forces and fibers orientation (with more damage if shear forces were 
perpendicular to the fiber orientation) [85]. Seeded chondrocytes 
were able to proliferate, exhibiting elongated or rounded shapes in 
aligned or randomly oriented fibrous layers respectively and producing 
GAGS and collagen type II in all the layers [84,85,91]. Interestingly, 
in the bi-layered scaffold built by Steele et al. with a top electrospun 
PCL nanofibres layer on a porous PCL layer, chondrocyte proliferation 
was homogeneous in the scaffold but GAGs, collagen type II and 
proteoglycans expression were highest in the smaller pore size area [86]. 
In other attempts to elaborate multiphase scaffolds, Stanishevsky et al. 
have developed collagen fiber composites loaded with hydroxyapatite 
nanoparticles [92], and Catledge et al. have reported on a triphasic 
scaffold obtained by electrospinning a mixture of PCL, type I collagen 
and hydroxyapatite nanoparticles [93].

Cell-substrate interactions

Quick and successful regeneration of bone and cartilage is 
necessarily driven by osteochondral cells efficient adhesion, migration, 
proliferation and differentiation within the biomaterial implants. 
Those cells can either migrate from surrounding tissues in acellular 
scaffolds or be seeded (and eventually cultivated before implantation) 
from patients own osteochondral cells or stem cells (either adult or 
embryonic) [3,5,94,95]. Considering the ethical and safety concerns 
raised against the embryonic stem cells, adult mesenchymal stem 
cells (MSC) are considered as better candidates for osteochondral 
regenerative medicine as they are available from a large range of tissues, 
can easily expand and differentiate into bone and cartilage cells in an 
adequate environment [94,95]. 

To be osteogenic, the nanostructured scaffold must provide 
chemical extracellular signals from the growth factors, cytokines 
(discussed in the following paragraph) but also some synergic physical 
features (high surface/volume ratio, nanotopography, 3D environment, 
substrate stiffness) which will shape cells capacities to interact with the 
ECM (cell’s adhesion, morphology, aligning and “mechanosensing”, 
ECM probing and deformation) and dictate the cells’ osteochondral 
fate [11,54,95,96].

Cell response to nanotopographic cues has demonstrated some 
specific nanostructure size range (3 to 29 nm) which promotes cell 
adhesion and osteoblastic differentiation [11]. Nanotopographic 
cellular “sensing” have been shown to involve some specific cell 
membrane adhesive proteins (integrins, and focal adhesion complexes) 
and to recruit many cytoskeleton structures (actin, talin,…) involved in 
some complex cellular mechanotransduction pathways (focal adhesion 
kinase FAK, extracellular signal-regulated kinase ERK/MAPK, rhoA/
ROCK) [95]. Other cellular mechanosensors such as primary cilia and 
mechanosensitive ion channels have also been identified and might 
be involved in the same intracellular activation pathways [96]. Such 

mechanotransduction mechanisms allow the cell to sense the external 
applied forces (compression, tension, fluid shear stresses and hydrostatic 
pressure). Stem cells exposed to tensile stretching or better to fluid 
shear stresses were found to differentiate into osteoblasts [11] while 
exposure to combined compressive-shear stresses, fluid shear stresses or 
hydrostatic pressure promotes a chondrogenic differentiation [97,98]. 
The cell mechanosensitivity allows also the probing of the substrate 
and its interaction (fiber aligning, ECM maintenance) via cellular 
contractibility [96,97]. Cells are able to “measure” the matrix stiffness 
and to adapt accordingly towards chondrogenic differentiation on soft 
substrate or osteogenic differentiation on stiffer ones [15,99]. Such 
property can be used to control the stem cells differentiation by varying 
the substrate rigidity with nanoparticles integration (GO, CNTs, HA 
nanocrystals) [13,14].

Biomaterial Nano-bioactivation
As previously explained, cellular adhesion, proliferation 

and osteochondral differentiation are strongly influenced by the 
nanostructural properties of the biomaterial but can also be driven 
synergistically by additional bioactive molecules such as binding 
proteins or peptides or by growth factors [29]. Growth factors such as 
Bone Morphogenetic Proteins (BMP-2, BMP-7), Vascular Endothelial 
Growth Factors (VEGF), Transforming Growth Factors (TGF), 
Epithelial Growth Factors (EGF), Fibroblast Growth Factors (FGF), 
Insulin Growth Factors (IGF), can be used successfully to promote the 
proliferation or to drive the differentiation and the gene expression of 
the cells [5,56,72]. 

Bioactive molecules can be injected locally in the healing area or 
directly incorporated into an implanted scaffold. Direct incorporation 
results generally in a short initial burst release and requires high 
dose of factors that can be detrimental to the surrounding tissue and 
cells (inflammation, cytotoxicity) [100]. Factors can also be directly 
embedded into the polymer (emulsion electrospinning, emulsion 
freeze drying) which allows a first burst release and then sustained 
slow release of the factors (several weeks). The matrix properties such 
as porosity or cross-linking degree will modulate the diffusion release 
of the growth factor [101,102]. The major drawbacks of this technique 
are a potential loss of bioactivity during the incorporation and a 
release rate dependent on the scaffold degradation which might not 
correspond to an optimized use of the factors. Various nanotechnology 
strategies can be used to protect the factors and to improve their release 
characteristics (duration, chronology, targeting, gradients…).

Binding proteins and peptides

Cell adhesion within the scaffold can be improved by addition of 
binding proteins or peptides such as integrins or the arginine-glycine-
aspartic acid (RGD) sequence [103]. More recently, integration of bone 
and cartilage matrix molecules such as heparin, or fibronectin into 
polymers have also been used to improve cell and bioactive molecule 
fixation [33]. Lee et al. [72] have for example developed an amphiphilic 
peptide able to bind a heparin sulphate-BMP-2 complex and fixed it 
inside a collagen scaffold. This peptide allowed binding of a very low 
dose of BMP-2 (11 μg compared to 12 mg therapeutic doses) with a 
very slow release speed (roughly 23% after 8 days compared to 84% in 
a heparan sulphate gel). Quicker bone regeneration was observed in a 
bone critical size defect from rat model using the collagen- amphiphile-
heparane sulphate-BMP-2 hybrid scaffold.

Nanostructured microspheres and nanoparticles

Bioactive molecules (growth factors or DNA/RNA sequences) can 
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Nanostructured Materials Fabrication techniques Cell types Cell behaviors

TiO2 nanotubes with Ta coating [57] Two electrode setup anodization and 
vacuum-deposited

Osteoblasts Improvement of viability and faster 
mineralization

TiO2 nanotubes [58] Two electrode setup anodization Chondrocytes Promotion of chondrogenesis
Carbon nanotubes+ nanocomposite of CHI 
fibers+ HA crystals [59]

Arc discharged method, freeze-drying 
and lyophilization

Osteoblasts Improvement of adhesion and proliferation

Graphene oxide (GO) + CHI + HA [14] Covalent liaison of CHI and GO in 
solution

MC3T3-E1 fibroblastic cells Improvement of adhesion, proliferation and 
osteogenic differentiation

Graphene oxide with PMMA [13] Chemical vapor deposition mesenchymal stem cells Improvement of osteogenic differentiation

Collagen-GAG scaffolds with biomolecular 
pattern (fibronectin) [49]

Direct photolithography MC3T3-E1 fibroblastic cells Improvement of the speed of cell attachment

Nanostructured alumina surfaces [39] Chemical vapor deposition Osteoblasts Induction of osteogenic differentiation
Polycrystalline titanium nanostructured surface 
with conformal bioactive calcium phosphate 
thin films sputter [50]

RF magnetron sputter deposition Bone marrow mesenchymal 
stem cells

Improvement of adherence, proliferation and 
osteogenic differentiation

Electrochemically grooved nanostructured 
stainless steel implant with pre-adsorption of 
protein [51]

Phase reversion-induced nanograined 
structure

Osteoblasts Improvement of osteoblastic function and 
activity

Micro- and nanopatterned transplantable 
poly(lactic-co-glycolic acid) polymer [52]

Capillary force lithography with a surface 
micro-wrinkling 

Mesenchymal stem cells Improvement of adhesion, osteogenic differentiation 
and pattern-controlled bone regeneration

Patterned silicon topographically-patterned 
surface [7]

Nanolithography Mesenchymal stem cells Specific size scale of topographic cue promotes 
osteogenic differentiation with or without 
osteogenic agents

Carbon nanotubes -reinforced HA coating on 
titanium implants [56]

Plasma-spray Osteoblasts CNT addition improves osseo integration 

Nanofibrous CHI-nanocrystalline HA scaffolds 
with single-walled carbon nanotubes [59]

Freeze-drying and lyophilization Osteoblasts Improvement of cytocompatibility for 
osteoblasts adhesion and proliferation

Nanofibrous PCL with BMP-2 nanoreservoirs 
[68]

Electrospinning and layer by layer 
deposition

Osteoblasts Improvement of osteogenic gene expression 
and mineralization

Nanofibrous gelatin [69] Thermally induced phase separation and 
porogene-leaching 

Osteoblasts Improvement of migration, proliferation and 
mineralization 

Collagen scaffold and heparin-binding peptide 
amphiphiles with nanofiber-heparan sulfate [72]

Peptide synthesis In vivo implantation without 
cells

Large volumes of regenerated bone 

Nano-fibrous Poly(l-lactic)acid scaffolds [73] Freeze-drying and lyophilization Osteoblasts Improvement of osteoblast phenotype, 
mineralization and earlier differentiation

Supra- molecular self-assembled nanofibers of 
peptide amphiphiles [76]

Standard solid phase methods and self 
assembly

Mesenchymal stem cells Improvement of viability and chondrogenic 
differentiation

Peptide hydrogel KLD12 ([KLDL]3) and 
RAD16-I ([RADA]4) 

Self assembly Chondrocytes [77]
Bone marrow stromal cells [78]

Promotion of chondrogenesis
Promotion of chondrogenesis

Poly(lactic acid-co-glycolic acid) nanocapsules 
with bone morphogenetic protein BMP-2 and 
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 
nanocapsules with BMP-7, embedded in CHI 
scaffold [84]

Co-electrospinning Bone marrow stromal cells Improvement of osteogenic differentiation 
(ALP activity)

Nanofibrous CHI, silk
Fibroin (SF) and CHI/SF [82]

Electrospinning Bone marrow mesenchymal 
stem cells

Promotion of proliferation and osteogenic 
differentiation

Nanofibrous PCL with BMP-2 nanoreservoirs 
[83]

Electrospinning and layer by layer 
deposition

Osteoblasts Promotion of mineralization and proliferation 

Nanofibrous PCL trilaminarcomposite scaffolds 
[84]

Electrospinning Chondrocytes Support chondrogenesis and higher 
mechanical properties 

Aligned nanofibrous PCL [85] Electrospinning Chondrocytes Higher resistance to damage 
Bilayered nanofibrous PCL [86] Electrospinning Chondrocytes correct 

topology
Promotion of chondrogenesis 

Nanofibrous Polyurethane (PU) and PU-HA 
composite [87]

Electrospinning Osteoblasts, embryonic 
mesenchymal progenitor cells

Higher mechanical properties and improvement 
of bone matrix formation

Oriented and aligned nanofibres of 
biodegradable poly-DL-lactide with embedded 
multi-walled carbon nanotubes [88]

Electrospinning Osteoblasts Improvement of osteoblast functions

Interspersed PLA and gelatin fibers [89] Co-electrospinning Chondrocytes Improvement of proliferation and differentiation 

Table 1: Summary of the osteochondro-inductive nanostructures presented and the cell behavior outcomes observed.

be integrated within a scaffold inside nanostructured microspheres or 
nanoparticles (NPs). Zhang et al. have written an exhaustive review 
of the nanoparticles available for growth factors: liposomes, lipid 
and polymer capsules, micelles, polymer NPs…[18]. Such release 
nanosystems improve the factors protection, allow a better control 

of their distribution (homogeneity, gradient) and fine tuning of their 
release rate. BMP-2, TGF-β1, or IGF-1 for instance were loaded 
in PLGA or PEG microspheres, resulting in good osteochondral 
regeneration [19,104,105]. BMP-2 and BMP-7 have been embedded 
within CHI nanofibres using two different polymers respectively (poly-
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lactic acid-co-glycolic acid (PLGA) and poly-3-hydroxybutyrate-
co-3-hydroxyvalerate (PHBV)) allowing a sequential release of the 
two factors and a synergic effect on the proliferation and osteogenic 
differentiation of the seeded mesenchymal stem cells [81]. Polymeric 
microspheres and nanoparticles can also be nanoengineered to 
improve their properties. Polyethylenimine (PEI)-albumin NPs 
used for BMP-2 delivery were modified with Poly-ethylene glycol to 
decrease PEI cytotoxicity allowing improved biocompatibility of the 
NPs and better bone formation despite a decreased fixation of BMP-
2 [106]. Microspheres can also be tuned by incorporation of HA 
nanocrystals to tune the factor release kinetics [107] or can present 
sophisticated core-shell architecture based on two different polymers 
(PLGA and alginate) loaded with different bioactive molecules (BMP-
2, dexamethasone) allowing an improved osteogenic effect on bone 
mesenchymal stem cells [108]. Recently, magnetic biocompatible 
scaffolds have been designed, containing magnetic nanoparticles 
allowing controlled release of growth factor by means of an external 
magnetic field [109,110].

Layer by layer deposition: nanocapsules and multilayered 
coatings

A very effective way to control the growth factor fixation into a 
scaffold and tune its release kinetics is the use of the Layer-by-Layer 
(LBL) deposition consisting in successive coatings with oppositely 
charged polyelectrolytes [68,83,111-113]. In our laboratory, the LBL 
technique was used to make multilayered PGA/PLL nanocapsules 
and to fix two growth factors (BMP-2 and TGF-β). The nanoparticles 
incorporated inside alginate gel with mice embryonic stem cells (ESC) 
were able to initiate osteoblastic differentiation in vitro and to induce 
bone formation when the alginate-nanocapsules-ESC was injected 
subcutaneously [111]. The growth factors release was found to be 
controlled by the layer enzymatic degradation by the cells, allowing 
a very local and efficient release. The following investigations focused 
on the bioactivation of a PCL electrospun matrix via the building up 
of LBL nanoreservoirs. Mendoza-Palomares et al. demonstrated the 
osteogenic properties of dendrigraft poly(-L-Lysine) (DGL)/BMP-2 
LBL nanoreservoirs on human osteoblasts, which efficiency was related 
to the number of deposited layers in the reservoirs [83]. Other polymers 
were also investigated (CHI, PLL) and displayed high osteogenic 
efficiency. Interestingly, the CHI nanoreservoirs displayed a fish-scale 
sharp shape while the PLL nanoreservoirs were smooth-shaped. This 
nanotopographic difference may explain the better osteogenic results 
observed with CHI- based nanoreservoirs.

Implant surface can also be bioactivated to improve its integration 
inside the bone tissue using a dual multilayer LBL coating: a first 
CHI-HA/poly-acrylic acid LBL coating to promote long term implant 
fixation and a Poly (β-amino ester) acid (poly2)/BMP-2 coating to 
promote the primary osteoconductive integration [113].

Other types of specific structures can be engineered using the LBL 
technique: Silva et al. were able to build a multilayered CHI/chondroitine 
sulphate scaffold deposited on paraffin beads construct. After the beads 
leaching, a highly porous multilayered scaffold was obtained exhibiting 
viscous-plastic mechanical properties close to those of cartilage and a 
good chondrogenic potential on adult chondrocytes and mesenchymal 
stem cells [112]. Crouzier et al. have coated macroporous tricalcium 
phosphate/HA granules with a biopolyelectrolyte multilayer film to 
deliver rhBMP-2, with positive osteoconductive and osteoinductive 
properties [114].

Conclusion and Perspectives
The recent developments of nanotechnology have a strong 

impact on the regenerative medicine and tissue engineering fields. 
Nanostructures presented in this review and their impacts on the cells 
fate have been summarized in the Table 1. Biomaterials can nowadays 
present designed structures from the macroscopic to the nanoscopic 
scale and allowing better biomimetic environment for the developing 
tissues. However, many problems still need to be solved. 

First, despite the development of sophisticated strategies to 
engineer micro and nano orientated structures, to engineer crosslinks, 
to incorporate nanotubes and nanocrystals, the polymer scaffolds 
generally present insufficient mechanical properties to resist the 
biomechanical environment of the osteochondral tissues and are 
unable to replace the tissues function. In a situation of high mechanical 
stresses, the cells are not able to proliferate and to behave properly and 
the tissue regeneration will be jeopardized. In the case of the replacement 
of the full osteochondral unit (hyaline cartilage and subchondral bone), 
the problem is more acute as the mechanical properties need to evolve 
from a soft, porous tissue to a rigid mineralized one. 

Second, the development of nanoparticles, complex microspheres 
and multilayered nanoreservoirs is a huge opportunity to cleverly bio-
functionalize the synthetic scaffolds and to drive the cell behavior and 
tissue regeneration, but investigations will need to focus on the fine 
tuning of the temporal and spatial delivery of the growth factors, the 
building of gradients and the development of factors co-delivery systems 
to promote synergic actions of the growth factors. Such strategies are 
of great importance for the development of complex cellular systems 
like the osteochondral unit: promoting on one side the development of 
chondrocytes and cartilage ECM in an avascular environment and on 
the other side, the development of a well vascularized bone tissue with 
osteoblasts, osteoclasts.

Finally, one more problem to solve is the proper implantation of 
the scaffolds within the defects in a clinical situation. Indeed, weak 
fixation of the scaffold will lead to improper mechanical loading 
of the implant and its damaging, compromising the success of the 
intervention. A close team work between biologists, material engineers 
and the surgeons is required via pre-clinical investigations to ensure 
the clinical viability of the bio scaffolds. In the pre-clinical aspect, there 
is also a lack of standard screening conditions for reliable comparison 
purposes between all the studies, for instance, there is no consensus in 
the choice of animal model for in vivo studies.

Primarily focused on the restoration of small osteochondral defects, 
all these nanotechnologies will surely evolve towards improvement 
of osteochondral biomechanical function in restored tissue, and 
will eventually enable the repair of larger defects and possibly the 
resurfacing of a whole joint.
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