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Introduction
Ion-selective electrodes (ISEs) are typical examples of chemical 

sensors that use the principle of molecular recognition [1].

Solid-contact potentiometric ion-selective electrode (SC-ISE), 
a new generation of ISE, is a promising substitute for conventional 
liquid-contact ISE, drawing tremendous attention from both the 
experimental and theoretical scientific communities [2]. The solid-
state electrodes in particular have great advantages of the mechanical 
flexibility, the possibility of miniaturization, and microfabrication. 
SC-ISE use a polymer-coated membrane that has direct contact with 
the metal substrate, which can be prepared by dipping the metal 
wire into a PVC cocktail membrane solution to form a bead. These 
membranes are easy to construct and are better suited for multi-ion 
sensors because they can be miniaturized and are not restricted to 
one side of the electrode. Therefore, these are gaining popularity in 
various medical, biotechnological, pharmaceutical, and environmental 
fields. Furthermore, this type of electrode allows for low detection 
limit which was attributed to the absence of trans membrane ion 
fluxes [2,3]. Lowering the detection limit of ion-selective electrodes 
has been a hot issue in electroanalysis since 1997 [4]. However, over 
the last decade the mainstream research was exclusively focused on 
application of plastic membranes, theory and practical aspects [5]. The 
mechanism of the potential formation of ion selective electrodes (ISEs) 
with a liquid or pseudo liquid (polymeric) membrane depends strongly 
on extraction and ion-exchange processes between the aqueous and 
organic phases [6]. The presence of salts consisting of a hydrophilic 
cation and a lipophilic anion [e.g., sodium tetraphenyl borate (NaTPB) 
or potassium tetrakis p-chlorophenyl) borate (KTpClPB)] in cation-
selective membranes based on neutral carriers has proved to be 
beneficial in many respects. It is known that the nature and amount 
of the lipophilic additive strongly affect the response of the membrane 
ion-selective sensors, for instance by reducing the membrane resistance 
[7], improving the response behavior and selectivity and in some cases 
[8], where the extraction capability is poor, increasing the sensitivity 
of the membrane sensor [9]. Consequently, it can be expected that 
increasing amounts of these salts will further decrease membrane 
resistance without changing the membrane selectivity. This can be 
important for electrokinetic studies (e.g., the evaluation of exchange 
current densities) on ion-selective macro electrodes where several 
difficulties can arise from high membrane resistance[8].
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Over the last few years, the use of surfactants in home and industry 
has significantly increased. The uncontrolled use of surfactants results 
in their accumulation in natural, domestic, and industrial waste waters. 
Because of their wide use, surfactants have become one of the major 
pollutants of soil and natural water [9]. This is why the increased 
interest of analysts in methods for determining these compounds in 
different samples is well understood. Gas chromatography, photometry 
and a number of other methods have been proposed for determining 
surfactants [9]. The reports on potentiometric methods, particularly on 
those dealing with ion-selective electrodes (ISEs) are of special interest 
[9]. Alkyl dimethyl ethanol ammonium chloride (HYCl) (Figure 1), 
is a typical cationic surfactant used throughout the world [10-12]. 
HYClis used in granular enzymatic detergent, [8] gel surfactant and 
commonly used in household cleaning such as laundry detergent 
composition [13-15]. However, the toxicity testing of HYCl to the fresh 
water alga and selenastrum capicornutum was studied [16]. Therefore, 
there is an increasing need for rapid reliable method to measure HYCl 
concentrations in natural waters to minimize risks associated with its 
use.

The aim of this research was to devise graphite-coated 
electrode(GCE)sensitive to HY ions (ISEs) based on a PVC 
membrane phase containing sodium tetraphenyl borate (Na-TPB) 
as an ionic additive. The detection limit was lowered to 8.0×10-9 M 
with concentration range 1.5×10-8-1.0×10-2. This electrode was used 
successfully for determination of HY ion in real samples with notable 
characteristics of wide concentration range, low limit of detection, 
good Nernstain slope, high selectivity over a wide variety of other 
cations and short response time.
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Experimental 
Reagents and solutions

Alkyl dimethyl hydroxyethyl ammonium chloride, (praepagen HY), 
40% was obtained from Clariant LTD company (Pratteln-Switzerland). 
Stock solution was prepared to contain 0.01M. Dioctyl phthalate 
(DOP), dibutyl phthalate (DBP), tris(2-ethylhexyl) phosphate TOPh, 
dioctylsebacate DOS, Silicotungstic acid (STA), phosphotungstic 
acid (PTA) and phosphomolybdic acid (PMA) were purchased from 
Sigma–Aldrich (CH-9471 Buchs-Germany). Tetrahydrofuran THF, 
Poly(vinylchloride) PVC, as well as metal cations were purchased 
from was obtained from (Sigma–Aldrich, CH-9471 Buchs-Italy). All 
the standard solutions of cations were prepared from their analytical 
reagent grade chemicals in deionized water and then diluted as desired.

Equipment

Potentiometric and pH measurements were made with a Pocket 
pH/mV Meters, pH315i (Wissenschaftlich-Technische Werkstatten 
GmbH (WTW), Weilheim, Germany). A saturated calomel electrode 
(SCE) was used as reference electrode for potential measurements 
and was obtained from Sigma-Aldrich Co. (St Louis, MO, USA). The 
emf measurements with the CGE were carried out with the following 
cell assemblies: Hg, Hg2Cl2(s), KCl (sat.) sample solution/membrane/
graphite.

Preparation of ion-exchangers

Ion-exchanger sensing materials containing HY were 
made according to a previously reported method, [17] from 
HY- silicotungstate, (HY-ST), phosphotungstate (HY-PT) and 
phosphomolybdate (HY-PM). Preparation of (HY- ST) was carried 
out by mixing the two solutions in the ratio of 4:1, i.e., 50 mL of 0.01M 
HY was mixed with 12.5 mL of 0.01M solution of silicotungstate (ST), 
phosphotungstate (PT) and phosphomolybdate (PM) were prepared 
by adding 50 mL of 0.01M solution of HY to the appropriate volume 
of 10-2 M solution to 16.7 mL of 0.01 M of one of (HY-PT) or (HY-
PM). The precipitates that formed were filtered off, washed thoroughly 
with distilled water, dried at room temperature and ground to fine 
powders. These ion-pair complexes were used as the active substances 
for preparing the proposed electrode of HY ion.

Fabrication of electrode

Different membranes were fabricated by mixing various amounts 
of ion-exchanger (HY-ST), (HY-PT) or (HY-PM), lipophilic additive 
(NaTPB), plasticizers viz., (DOP, DBP, TOph and DOS) and PVC using 
10 mL of THF. All the components were mixed homogenously with a 
glass rod until the solution became viscous. Graphite rod, about 1mm 
diameter and 50 mm long was first polished on a cloth pad, washed with 
water followed by acetone and sequentially air-dried. One end of the 

wire (about 20 mm length) was coated by repeated dipping (about five 
times, a few minutes between dips) into the concentrated membrane 
solution. A membrane was formed on the rod wire surface was allowed 
to dry for 3-4 hours. The electrode was then sealed in syringe tube with 
parafilm, taking care that the electrode portion having membrane layer 
remains exposed. The prepared electrodes were conditioned for 1 h in 
0.001M HYCl solution. 

Calibration of the sensors 

The calibration of the HY sensor under investigation was 
established by immersing the HY working electrode in conjunction 
with the reference electrode in 50 mL beakers containing known 
aliquots of standard 2.0×10-9 to 1.0×10-2 M HY made by serial dilution. 
The potential was plotted against the negative logarithmic value of 
HY concentrations. Each solution was stirred and the potential was 
recorded when it became stable, and plotted as a logarithmic function 
of HY cation activities.

Effect of foreign ions on the electrode selectivity
The potentiometric selectivity coefficients 

,
log Z

pot
HY  J

K + were
determined according to IUPAC guidelines using the separate solutions 
(SSM) and matched potential (MPM) methods [18].

Sample preparation

Samples of alkyl dimethyl Hydroxy Ethyl ammonium chloride (HY) 
ranging from 1.0×10-8 to 1.0 10-2M HY were determined by the standard 
addition, potentiometric titration and the calibration curve methods. 
The required amount of the stock (40% solution) was transferred to a 
50.0 mL volumetric flask and diluted to the mark with distilled water 
to make 0.01 M solutions of HY. Different volumes of these solutions 
equivalent to 1.5×10-8 to 1.0×10-2 M were taken and analysed by the 
above methods using the present electrode. Each analysis was repeated 
5 times. Real samples include Nutra (liquid detergent) and Nutra 
(shampoo) contain 50.0 and 100.0 mg/mL of HYCl which correspond 
to 1.4×10-1 and 2.8 10-1mol L-1 of HY respectively. Dilute solutions 
that are 1×10-4 M and 1×10-5 M of each were made by transferring the 
required amounts to 25.0 mL volumetric flasks and properly diluted. 
These solutions were subjected to the standard addition method and 
the calibration curve method.

Sample analysis

In potentiometric titration, different volumes of HY solution 
containing 1.92-38.4 mg, were transferred to a 25.0 mL beaker, and 
titrated with a standard solution of Na-TPB using HY-PT as indicator 
electrode conjugated with Saturated Calomel Electrode (SCE). The 
potential was plotted against the volume added of the titrant and the 
end points were determined from the S-shaped curves using the first 
derivative plots. 

The standard addition method in which known increments of 
(0.1 M) HY solution were added to 25.0 mL aliquot samples of two 
concentrations (1.0 10-7 and 1.0 10-6 M) HY was applied. The change in 
potential at (25 ± 0.1°C) was recorded after each increment and these 
data were used to calculate the concentration of HY in the sample 
solutions. In the calibration graph method, different amounts of HY 
were added to 50.0 mL of water comprising a concentration range from 
1.5×10-8 to 1.0×10-2 M and the measured potential was recorded using 
the present electrode. Data were plotted as potential versus logarithm 
of the HY activity and the resulting graph was used for subsequent 
determination of the concentration of surfactant samples [19].

Figure 1: The chemical structure of HYCl.



Volume 1 • Issue 1 • 1000101J Environ Anal Chem
ISSN: JREAC, an open access journal

Citation: Abu Shawish HM, Gaber M, Khedr AM, Abed-Almonem KI (2014) Nanomolar Detection of Alkyl Dimethyl Hydroxyethyl Ammonium Surfactant 
by a Lipophile-doped Solid Contact Electrode. J Environ Anal Chem 1: 101. doi:10.4172/2380-2391.1000101

Page 3 of 6

Result and Discussion 
The potentiometric response is dependent on the activity of the 

analyte as anticipated by Nernst equation:
2.303

= + = +o o
i i

i i

RT RTEMF E  lna E  loga
Z F Z F

  (1)

This response is dependent on the potential difference across 
the phase boundary between the sample phase and the hydrophobic 
ion-selective membrane. The different affinities of the two ions in the 
aqueous and the organic phases result in charge separation across the 
interface between the two phases. This interfacial charge separation is 
the origin of the interfacial phase boundary potential. The sensitivity 
and selectivity of any membrane sensor are significantly related to the 
composition of the membrane, the nature and amount of the solvent 
mediators and additives used. The effects of these parameters on the 
behavior of the proposed sensor were studied and the results are 
provided in table 1.

Ion-exchanger selection

Ion-exchangers used in ion-selective membrane sensors should 
have rapid exchange kinetics and adequate stability. In addition, 
they should have appreciable solubility in the membrane matrix and 
sufficient lipophilicity to prevent leaching from the membrane into 
the sample solution [20]. The ion-exchanger incorporated in each 
electrode was an ionassociation of the HY cation with a heteropoly 
anion: silicotungstate H4(SiW12O40), phosphotungstate H3(PW12O40) or 
phosphomolybdate (H3PMo12O40). These species with high molecular 
weights anions, 1823, 2880 and 1825 respectively, have different 
lipophilicities and stabilities. They were used as electroactive materials 
in plasticized poly(vinyl chloride) matrix membranes, and as candidates 
for the formation of highly lipophilic ion associates with many 
organic cations as well as active recognition elements in the proposed 
electrodes [21]. The electrodes containing some or no ion exchanger 
were made and their emf measured at various concentrations of the 
HY. The membrane with no ionpair showed no response (composition 
# 1). The electrode that contained HY-PT (composition # 4) gave the 
best results with a response that improved with optimization of the 
composition of the membrane according to Table 1. The lipophilicity 
of HY-PT is more than the others as it is more bulky and has the highest 
molecular weight. Therefore, the membrane containing 1.0% HY-PT 

complex produced the best response (sensor # 4). Further addition of 
the ion-exchanger complexes (sensor# 5) resulted in a little decrease in 
the response of the electrode. This drop is most probably due to some 
inhomogenieties and possible saturation of the membrane [22].

Membranes with lipophilic anions as additives

It is known that the nature and amount of the lipophilic additive 
strongly affect the response of the membrane ion-selective sensors. That 
is likely due to reducing the membrane resistance [23], improving the 
response behavior and selectivity [24]. In addition, it causes increasing 
the sensitivity of the membrane sensors where the extraction capability 
is poor [9,25].

Therefore, tetraphenyl borate was used as a lipophilic additive 
to the designed electrode. The results are compiled in table 1 which 
indicates a clear improvement of the detection by about 100 fold. This 
improvement can be interpreted as described below. If no ionic sites 
are added in the membrane, coextraction of the analyte ion and its 
counter-ion into the organic phase occurs according to the following 
reaction [26]:

+ − + −+ ↔ +aq aq mem memHY  Cl HY Cl    (2)

Thereby causing no charge separation at the interface. It is necessary 
to add a hydrophobic ion such as tetraphenyl borate ion (TPB-) that has 
a charge sign opposite to the charge sign of the measured ion, to the 
organic phase in addition to the electrically neutral ionophore to keep 
the activity of the ion of interest in the bulk of the water-immiscible 
sensing phase sample-independent. The ionic sites in the membrane 
repel Cl- ions from being coextracted into the organic phase, thus they 
are necessary for generation of analyte-ion activity (concentration)-
dependent membrane potential changes. However, when the 
concentration of HY+ in the organic phase is very high because these 
ions balance the negative charge of the hydrophobic counter anions 
(TPB-), resulting in a very low Cl‑ membrane as show in Figure 2. This 
can be understood from a Le Chatelier effect on the HYCl distribution 
between the two phases (eq. 2); a high concentration of HY+in the 
organic phase favors chloride transfer into the aqueous phase [27].

Solvent mediators (plasticizer) effect

The plasticizer influences the mobility of the ion-pair through 
extraction of both ions into the organic phase [28,29]. Therefore, it is 

No. Kind of
Wires

Composition (%) Electrode characteristics
S C.R (M) LOD (M) R.S.D % R(S)

IE PVC P A
1 Graphite - 48.2 51.8 (DBP) 43 ± 0.2 1.4×10ˉ5 -1.0×10ˉ2 3.4×10ˉ5 0.95 16
2 0.5 (HY-PT) 48.5 51.0 (DBP) 47 ± 0.3 2ˉ10×1.0ــ7ˉ10×9.1 3.2×10ˉ7 0.21 9
3 1.0 (HY-PT) 48.2 50.8 (DBP) 50 ± 0.6 2ˉ10×1.0ــ7ˉ10×6.3 1.0×10ˉ7 0.24 12
4 1.0 (HY-PT)* 48.1 50.8 (DBP) 0.1 57 ± 0.4 1.5×10-8 –1.0×10-2 8.0×10ˉ9 0.24 4
5 1.5 (HY-PT) 48.3 50.2 (DBP) 47 ± 1.0 2ˉ10×1.0ــ7ˉ10×1.0 6.3×10ˉ6 0.17 14
6 1.0 (HY-PT) 48.2 50.8 (DOP) 0.1 46 ± 1.2 7.9×10ˉ6 -1.0×10ˉ2 6.3×10ˉ6 1.25 11
7 1.0 (HY-PT) 48.1 50.8 (DOS) 0.1 43 ± 0.3 2ˉ10×1.0ــ6ˉ10×8.8 3.2×10ˉ7 1.01 8
8 1.0 (HY-PT) 48.1 50.8 (TOPh) 0.1 47 ± 0.3 2ˉ10×1.0ـ 7ˉ10×1.6 1.0×10ˉ6 0.65 16
9 1.0 (HY-PM) 48.2 50.8 (DBP) 45 ± 0.6 2ˉ10×1.0ــ6ˉ10×5.1 3.0×10ˉ6 0.24 12

10 1.0 (HY-ST) 48.2 50.8 (DBP) 45 ± 0.6 2ˉ10×1.0ــ7ˉ10×6.3 1.0×10ˉ7 0.24 12
11 copper 1.0 (HY-PT) 48.2 50.8 (DBP) 46 ± 1.0 2ˉ10×1.0ــ6ˉ10×7.1 9.5×10ˉ7 1.21 8
12 Silver 1.0 (HY-PT) 48.2 50.8 (DBP) 46 ± 1.0 2ˉ10×1.0ــ6ˉ10×7.1 9.5×10ˉ7 1.21 4
13 Platinum 1.0 (HY-PT) 48.2 50.8 (DBP) 47 ± 1.0 2ˉ10×1.0ـ 6ˉ10×1.6 1.2×10ˉ5 0.35 15

I.E: Ion-Exchanger, PVC: Poly Vinyl Chloride, P: Plasticizer, S: Slope (Mv/Decade), C.R.: Concentration Range, LOD: Limit Of Detection, R(S): Response Time(S)
*Selected composition, A: lipophilic additive (sodium tetraphenyl borate)

Table1: Composition and Slope of Calibration Curves for HY-Electrodes at 25.0 ± 0.1ºC.
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necessary to use other plasticizers with different physical parameters 
such as dielectric constant (ε), lipophilicity (log PTLC), viscosity (η) 
and molecular weight (M.wt) [30]. Therefore, four different plasticizers, 
viz. DOP, DBP, DOS and ToPh were added in an attempt to improve 
the performance of the electrode and the results obtained are shown in 
figure 3. Generally, plasticizers improve certain characteristics of the 
electrodes, but in some cases, the response characteristics get affected 
adversely. In this study no relation between the physical parameters 
and the response characteristics was found. Nevertheless, better 
response characteristic values are obtained when the properties have 
intermediate values. Comparatively, DBP with relatively moderate 
viscosity, lipophilicity and low dielectric constant, produced the best 
result and was used in further characterization as shown in table 2. 
Out of the electrodes tested, the electrode containing ion-exchanger 
complex 1.0 wt% HY-PT, 48.1 wt% PVC, 50.8 wt% DBP and 0.1wt% 
Na-TPB exhibited the best response characteristics and the lowest 
detection limit. Therefore, this composition was used to study 
various operation parameters of the electrode. The electrochemical 
performance characteristics of this electrode were systematically 
evaluated according to the International Union of Pure and Applied 
Chemistry (IUPAC) recommendations [31].

The dynamic response time behavior and reproducibility of 
the proposed electrode

Dynamic response time is an important factor for any ion-selective 
electrode. The response time of the electrode was obtained by measuring 
the time required to achieve a steady state potential (within ± 1 mV) 
after successive immersion of the electrode in a series of HY solutions 
[31], each having a 10-fold increase in concentration from 1.0×10-6 to 
1.0×10-2 M. As shown in figure 4, the electrode yielded steady potentials 
within 5-8 s. The potential reading stays constant, to within ± 1mV, 
for at least 5 min. The reproducibility of the electrode was examined 
by determining 1.0×10-6 and 1.0×10-5 M HY ion solution. The standard 
deviation in emf measurements for five replicate solutions was found 
to be 1.12 for 1.0×10-6 M solution and 0.54 for 1.0×10-4 M solution. 
Considering the low value of the standard deviation for these replicate 
measurements it is clear that the repeatability of the present electrode 
is satisfactory.

The stability of the electrode was tested by making successive 
calibrations with the same electrode in 1.0×10-5 M of HY+ over a period 
of 8 h. The relative standard deviation (RSD) of the electrode potential 
readings was 0.84 mV (n=5). This result indicates that the proposed 
electrode shows a good reproducibility and stability.

Electrode selectivity

The separate solution method (SSM) is recommended by IUPAC 
to determine the selectivity coefficient of the ISE [18]. SSM is based 
on Nickolsky-Eisenman equation. However, it has been shown that 
this method suffers some limitations in terms of the values for ions 
of unequal charges, a non-Nernstain behavior of interfering ions [32]. 
Therefore another method named the ‘matched potential method 
(MPM)’ was recommended especially when the primary ion and/or the 
interfering ion dissatisfy with the Nernst response or when the involved 

Figure 2: Schematic representation of the corresponding surface model that 
shows orientation of HYCl across the interface in the presence of the added 
anionic sites in the membrane phase (right).

Figure 3: Variation of electrode potentials with different plasticizers.

Interfering ions SSM MPM
NH+ 4.48 × 10-4 6.48 × 10-4

Na+ 1.59 × 10-4 3.33 × 10-5

K+ 4.12 × 10-4 5.88×10-5

Ag+ 1.06 × 10-4 8.96 × 10-4

Li+ 5.54 × 10-4 1.18 × 10-5

Pb+2 4.11 × 10-4 2.53 × 10-4

Mg2+ 5.15 × 10-4 1.29 ×10-5

Ca2+ 5.47 × 10-4 4.44 × 10-5

Ba2+ 4.09 × 10-4 3.97 × 10-5

Zn2+ 3.56 × 10-4 6.50 × 10-5

Ni2+ 6.61 × 10-4 3.47 ×10-5

Cd2+ 4.77 × 10-4 5.17×10-5

Co2+ 2.52 × 10-4 9.27 × 10-5

Cu2+ 1.22 × 10-4 8.22 × 10-5

Al3+ 2.13× 10-4 2.45 × 10-5

Cr3+ 1.02 × 10-4 2.88 × 10-5

Hg+2 7.10 × 10-4 3.78 × 10-5

CTAB 1.77 × 10-2 6.28 × 10-2

Benzlkonium chloride 1.90 × 10-2 2.38 × 10-2

Na- dodocylSulphate 9.02 × 10-5 2.43 × 10-6
Na-EDTA 3.33 × 10-6 4.21 ×  10-6
TEA - 5.44 × 10-6
Glycerin - 3.00 × 10-5
Propylene glycol - 5.52× 10-6
Luramide - 4.04 × 10-7

Table 2: Selectivity coefficient of various interfering ions.
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ions have unequal charges [33]. The resulting values, presented in 
table 2, show that the electrode display significantly high selectivity 
for HY over many common organic and inorganic compounds 
and surfactants, except benzlkonium chloride and Cetyl Trimethyl 
Ammonium Bromide (CTAB) which showed moderate interference 
that is likely due to having similar structure. Fortunately, two cationic 
surfactants benzalkonium chloride and (CTAB) have moderate effect 
on the response of the electrode but these are not present in the same 
formulations. For this reason, they do not prejudice the quality of the 
determinations.

Effect of pH

The influence of the pH of the solution on the response of the 
proposed electrodes was studied for 1.0×10−5and 1.0×10-4  M HY+ 

ions in the pH range of 2.0-11.0. The pH was adjusted with 0.1  M 
solutions of hydrochloric acid or sodium hydroxide. It can be seen 
from Figure  5  that the variation in potential is acceptable in the pH 
range 3.0-9.4. Nevertheless, at pH values<3.0, a decrease was observed 
that is probably caused by the H3O

+ effects on the electrodes and may 
also be due to leaching of the ion exchangers in acidic media. On the 
other hand, the potentials decreased gradually in solutions as the pH 
was raised above 9.4, a drop that can be attributed to the penetration 
of the OH− ions into the membrane and reaction with PT− ions which 
decreased the ion-pair and the amount of the electroactive material of 
the electrode.

Analytical applications

In order to test the analytical applicability of the proposed sensor, it 
has been applied for determination of HY ions in some liquid detergent 
and shampoo. 

Determination of HY in liquid detergent and shampoo

The proposed electrode was used in the standard addition and 
calibration methods for determination of HY content (Nutra) liquid 
detergent and (Nutra) shampoo. It is clear that the amount of HY ion 
can be accurately determined with these electrodes as shown in table 3.

Titration of benzalkonium chloride solution with Na-TPB 
solution

The present sensor was used as an indicator electrode in 
potentiometric titration of HY with Na-TPB. The resulting titration 
curve is shown in figure 6. It is clear that the amount of HY ion can be 
accurately determined with this electrode.

Figure 4: Response time of the electrode for step changes in concentration of 
HYCl from (2.0×10−6 - 2.0×10−2 M).

Figure 5: Effect of pH on potential response of the electrode using 1.0×10-4 M 
and 1.0×10-5 M HYCl solutions.

Figure 6: Potentiometric titration curve of 10.0 mL of 1.0×10−2 M solution of 
HY with 1.0×10−2 M Na-TPB.

Sample Taken(M) Found(M) R.SD.%
Nutra(Liquid 
detergent)

s(1.0×10-5)
c(1.0×10-4)

s(9.50×10-6)
c(9.45×10-5)

0.58
1.23

Nutra (Shampoo) s(1.0×10-5)
c(1.0×10-4)

s(9.30×10-6)
c(9.50×10-5)

0.89
1.46

Table 3: Analysis of Hy in various samples using calibration curve and standard 
addition method.
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Conclusions
A new graphite coated electrode based on HY-PT as ionophore 

was used for HY determination. The electrode shows high sensitivity 
(8.0×10-9), reasonable selectivity, fast static response, long term 
stability and applicability over a wide concentration range 
(1.5×10-8 to 1.0×10-2). The proposed potentiometric electrodes offer 
the advantages of simplicity, accuracy, automation feasibility and 
applicability to turbid and colored sample solutions.
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