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Introduction
This editorial is aimed at addressing two key aspects of nanoscale 

light sources: (1) low-power optical communication and (2) 
crystallographic defect engineering for monolithic integration with 
silicon. We will further discuss opportunities and challenges for 
nanoscale light sources for next generation, high density optical 
interconnect. Designing and prototyping light sources with sub light 
wavelength dimensions has been the topic of keen interest because of 
their versatility in optical communication. For example, nano light 
sources can operate at hundreds of GHz [1,2] which is not possible 
with conventional light sources [3]. In addition, power consumption 
in interconnects with these light sources can be reduced by omitting 
the modulator and using direct source modulation to encode optical 
data [4]. There are a number of nano light sources under investigation: 
(i) small photonic mode laser [5-9], (ii) plasmonic lasers [10,11] (iii) 
photonic-plasmonic hybrid lasers [12-15] and (iv) nanoscale LEDs 
[16,17]. Pros and cons of these nano light sources are discussed below. 

Nano scale photonic mode lasers based on photonic crystals (PhC) 
have shown the most promise requiring the lowest threshold current 
due to the high cavity quality factor [8,9]. The main drawback of such 
devices is their relatively large foot print (~10 m2) which makes 
them unsuitable for monolithic integration with Si (see discussion 
below). On the other hand, metal cladded plasmonic lasers which have 
sub light wavelength foot print are capable of achieving high optical 
confinement, but these suffer from optical losses in the metal. For 
this reason plasmonic lasers operate at higher threshold currents than 
what is expected from a scaled optoelectronic device [18]. As such, 
the threshold current for state-of-the-art laser is in the tens of A’s 
range for deep-sub-wavelength lasing modes [19]. Most successful 
demonstrations to date on plasmonic lasers have been conducted 
by optical pumping because electrical-pumping requires either low 
temperature operation or large mode size above the diffraction limit [3]. 
To address shortcomings of plasmonic lasers, hybrid mode photonic-
plasmonic lasers, whose mode primarily resides in the low-index oxide 
layers instead of the gain medium, have been designed. However, the 
low optical confinement factor of the hybridized optical mode limits the 
optical gain [13,14]. The most attractive option for a nano light source 
appears to be a nanoscale LED for two reasons: (1) improved Purcell 
factor resulting from the small cavity volume requirement [1,20] and 
(2) no threshold current requirement. The downside of nano-LEDs is 
their limited power output. 

Challenges
Output power

The minimum power required for a nano-LED light source should 
exceed the quantum shot noise limit (20 photons/bit) of a photo-
detector for optical communication to maintain a bit-error-rate of 10-9 

[21]. However, the state-of-the-art photodetectors have significantly 
higher power requirements [22,23] which poses challenge for nano-
LEDs based optical communication. Nano-photo detectors with very 
low detector capacitance [24,25] have been proposed but such devices 
have not yet been successfully demonstrated.

Surface passivation

To achieve high Purcell factor and enable high modulation 
speeds, metal cavity devices, such as plasmonic devices require 
cavity dimensions on the order of 100 nm. Highly effective surface 
passivation is therefore required to achieve surface recombination 
velocity to <104 cm/s. Although successful passivation schemes have 
been demonstrated [26], process compatibility and long-term stability 
has not yet been studied.

Efficiency

Nano plasmonic devices inherently have higher optical loss in the 
cavity than conventional light sources due to smaller volume. So far the 
demonstrated power efficiency and quantum efficiency are still orders 
of magnitude lower than conventional lasers. Photonic crystal lasers 
and nano-LEDs, are better alternatives for higher efficiency [9,16].

Optical coupling

Efficient coupling into an adjacent on-chip waveguide is challenging 
for small light sources, due the impedance mismatch between the high 
wave vector mode inside the nanolaser and the lower k-vector of the 
waveguide. However, several groups have recently achieved improved 
coupling efficiency of ~70% [7,27,28]. This required significant 
simulation, design optimization, and experimental control.

Reliability

Even though the power output of a nanolight source is typically 
in the sub micro watt range, its power density is nevertheless higher 
compared to a conventional light source. The high power density/high 
current density may cause reliability issues, such as electro migration 
and device heating [29]. Additionally, reliability issues could arise due 
to mechanical and thermal stresses in a packaged product.

Line width

Nano lasers are prone to increased spectral line width due to 
enhanced Purcell factor. Therefore, such lasers may not be suitable for 
DWDM applications. However, CWDM application might be possible 
because wavelength multiplexing in this case is relaxed.

Opportunities
Nano light sources are an attractive option for highly scaled short-

distance optical interconnects [4]. We identify two key opportunities 
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for nanolight sources: (i) monolithic integration, and (ii) three orders of 
magnitude higher density in optical interconnects on a semiconductor 
IC. 

Monolithic Integration on Si or SOI Substrates

Sub-light wavelength dimensions of nanolight sources enable 
monolithic integration with Si or SOI substrates in an unprecedented 
manner, i.e., the integration does not degrade the LED efficiency due 
to lattice mismatch related crystallographic defects. This is because the 
probability of a dislocation or other crystallographic defect existing 
in the active device area decreases super linearly as devices approach 
nanometer dimensions (Figure 1). A monolithically grown III-V nano 
light source on Si substrate was indeed fabricated and its performance 
was analyzed [30,31]. We stipulate that when these devices are 
miniaturized to dimensions that are comparable to or smaller than the 
spacing between crystallographic defects, it may be possible to avoid 
defects in a majority of these devices to achieve higher performance 
on silicon. 

High density optical interconnects
As an example, Figure 2 shows a nano-LED integrated 

monolithically by growing either a patterned III-V or a patterned III-N 
based LED structure onto an SOI substrate. A low-capacitance (~30 
aF) and high efficiency Ge PIN photodiode is required. Numerical 
simulations indicate that 50% EQE is achievable with such a detector 
[32]. A low-loss waveguide is preferred. Previously, a “etch-less” 
waveguide has indeed been demonstrated earlier using SOI (0.3 dB/cm) 
in conjunction with selective oxidation to obtain high quality sidewalls 
[33]. Near ideal transmission (up to 93%) could be achieved over a ~1 
cm distance. For a more typical loss of ~2 dB/cm, the transmission 
efficiency of the waveguide drops to ~63% for a distance of ~1 cm, but 
it can maintain ~95% transmission efficiency for a distance of ~1 mm. 

Based on the scheme shown in Figure 2, it can be postulated that 
the optical interconnect density with nano-LEDs can be increased 
by three orders of magnitude over the current density. For example, 
for a waveguide with ~70% coupling efficiency, a transmitter with an 
EQE of ~20%, and photon energy of ~1 eV, ~125 photons/bit will be 
required to generate charge equivalent to 0.3 V. This corresponds to 
energy consumption of ~0.12 fJ/bit for the nano-LED. We estimate 
that a nano-LED with a drive current of 5 A can operate at 40 
GHz which will correspond to average optical power of ~0.8 W in 
the waveguide. This power level is over 3 order of magnitude lower 

compared to a standard conventional InP laser in use presently for 
optical interconnects. Therefore, nano optical devices in conjunction 
with monolithic integration has the potential to increase the number 
of chip-integrated devices from ~103 presently to 106 in future, 
notwithstanding the challenges described above.

Concluding Remarks
In summary, it is clear that nano light sources are a very attractive 

option for future optical interconnects for high band width optical 
communication. The possibility that monolithic integration of these 
devices on Si or SOI can be done without performance degradation 
will create a new paradigm for on-chip optical communication at short 
distances (<1 cm). Such integration can be scaled for high volume 
manufacturing making it cost competitive.
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Figure 1:  Defect free device yield of various sizes of devices as a function of 
defect density for III-V materials directly grown on Si substrate.

Figure 2: One possible scenario for an optical interconnect with a nanoscale 
light source, a low loss waveguide, and a low-capacitance photodetector.
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