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Abstract

After a peripheral nerve injury, various aspects, including mechanical nerve properties, will influence
regeneration. The reduction of nerve viscoelasticity, intraneural edema, mechanosensitivity, and adhesion of neural
tissue to its interfaces may be a target to approaches that impose graded mechanical loads to the nerve. However,
the effects of those treatments on peripheral nerve regeneration are not clear. Particularly neurodynamic
mobilizations may be very useful. They consist of therapeutic maneuvers to assess nerve mechanical properties and
restore their function through graded movements of the peripheral nerve attachments to bones and muscles. Here
we discuss theoretical and experimental data regarding the effects of graded mechanical loads on peripheral nerve
function and regeneration, and propose how neurodynamic mobilizations would interact with the peripheral nerve in
order to promote regeneration. Those effects would influence the reduction of edema, normalization of axoplasmic
flow, decrease nerve mechanosensitivity, and promotion of appropriate nerve mobility, increasing glial and neuronal
activity.

Keywords: Peripheral Nerve Regeneration; Neurodynamic
Mobilization; Mechanical Load; Nerve; Biomechanics

Introduction
Peripheral nerves may have their normal function disturbed by

traumatic, metabolic and/or immune injuries, that lead in general to
flaccid paralysis or paresis, sensory disturbances, pain and autonomic
dysfunction[1]. As consequences a series of changes will occur in their
target organs, such as muscles and vessels [2]. Those changes are not
only peripheral, but also happen in the central nervous system,
including the spinal cord and the brain [3-5].

Anatomically, the peripheral nervous system is complex, being
composed of hundreds to thousands of nerve cells surrounded by
biologic tissue layers. Peripheral nerve trunks connect the brain and
spinal cord to all muscles, glands, blood vessels and other body
structures by means of motor (somatic or autonomic) and sensory
neurons. The structure of the peripheral nerve trunk is unique and
dramatically different from the brain and spinal cord. Peripheral nerve
cells are involved by three layers of connective tissue, epi, peri and
endoneurium [6]. Among other functions, these layers provide
mechanical properties to the peripheral nerve.

When the nervous system is in dysfunction, its mechanical
properties are also affected [7,8]. The understanding of this specific
pathomechanic behavior is essential for a number of disciplines, but
surgery and physiotherapy are the ones that most directly deal with
these changes. After a traumatic compression injury there is an
inflammatory reaction associated with edema, which increases
mechanical stress imposed to the peripheral nerve. There is
consequent increase in nerve sensitivity, resulting in the presence of
signs and symptoms frequently seen in nerve entrapment syndromes
such as carpal and tarsal tunnel syndromes, and piriformis syndrome
[7-10]. When the trauma results in nerve transection, surgery is
mandatory with a dramatic impact on peripheral nerve mechanics.
Soon after lesion and/or surgery, stress on the nerve should be avoided
in order to prevent pathological tension and disruption of the suture.
However, if immobilization is maintained for a long time, lack of
movement and adequate mechanical load may lead to nerve adhesion
to adjacent layers, poor drainage of endoneurial edema, fibrosis and
permanent dysfunction of the peripheral nerve [11-13].

One of the physiotherapeutic goals after peripheral nerve injuries is
to maintain adequate movement between the nerve and its anatomical
interfaces [14]. A series of maneuvers – Neurodynamic Mobilization
(NM) may be used to impose specific tension to individual nerves,
nerve trunks and plexus. If symptoms are reproduced, these
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maneuvers can be used to restore adequate mechanical properties
[15,16]. However, although there is a growing understanding on how
mechanical stress influences biological tissues [17] and how these
maneuvers can be used in the diagnosis and treatment of disorders of
the peripheral nervous system, curiously there is quite poor evidence
on how they affect peripheral nerve regeneration. Understanding this
phenomenon is of fundamental importance in the recovery of motor,
sensory and autonomic functions, after the lesion [18]. Therefore the
aim of this study is to review the literature on the influence of
mechanical loads applied to peripheral nerves on its physiology and
regeneration after lesion. We also highlight the lack of experimental
studies involving the effects of graded mechanical loads –
neurodynamic mobilization on peripheral nerve regeneration,
suggesting some mechanisms by which these maneuvers would act
therapeutically to enhance regeneration.

Methodology
Articles to compose the main section of this review (mechanical

loads and nerve regeneration) were tracked in PubMed, using the key-
terms Peripheral Nerve Injuries, Peripheral Nerve Regeneration,
Neurodynamic Mobilization, Mechanical Load and Nerve
Biomechanics. There were no limits of language or year of publication.
Included studies involved either laboratory animals or human samples
(including cadavers) where the influence of mechanical loads on
peripheral nerve physiology and/or regeneration was assessed.

Results
The first results of this search found 2159 articles, which had their

titles and abstracts read to exclude those, which did not involve the
objective of the study. This resulted in 202 articles, which were read to
identify their results regarding the influence of mechanical loads on
peripheral nerve regeneration. From these articles were included in
this review 70 (Figure 1).

Discussion

Axons, Schwann cells, myelin sheath and axonal transport
can be influenced by mechanical loads

The axons of intact and mature peripheral nerves comprise the
axoplasm, which contains a scaffold of organelles and proteins
consisting of microfilaments, intermediate neurofilament proteins and
microtubules. The axons are enveloped by the plasma membrane,
called axolemma. Microfilaments are found in subaxolemal
cytoskeleton, while neurofilaments and microtubules are distributed
throughout the axon [19].

Schwann cells (SC) are recognized in vivo at the ultrastructural level
by its close association with axons. By electron microscopy, its core is
described as pale, without condensation or nuclear irregularities. Most
have pale cytoplasm with a minority (less than 5%) with dark
cytoplasm, and most do not have prominent organelles [6]. The basal
membrane of the SC is easily recognized by electron microscopy as an
irregularly distorted material outside of the plasma membrane.

It can be divided into two layers known as the lamina densa (dense
area) and an inner lamina lucida (free space), being composed of type
IV collagen, laminin and fibronectin. SC mediate nerve adaptation to
gradual lengthening of a member through the expression of TNF-
alpha [20]. Low elongation rates allow the nerves to fit to the increase

of the internodal distance [21], and elongation of the SC [22]. This
behavior allows the peripheral nerves to grow during normal
development and also when submitted to stretching.

Figure 1: Flow diagram of the revision, From: Moher D, Liberati A,
Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred
Reporting Items for Systematic Reviews and Meta-Analyses: The
PRISMA Statement. PLoS Med 6(6): e1000097. For more
information, visit www.prisma--statement.org.

The myelin sheath consists of a lipid membrane, which is
synthesized by SC in the Peripheral Nervous System (PNS) and
oligodendrocytes in the central nervous system. The myelination of
the PNS involves the spiraling of the CS membranes around axons to
form sheaths or lamellae. The number of lamellae is a function of the
diameter of the axon [19]. In general, the myelin is composed of about
70% of lipids, and 30% of proteins.

Axons and CS, among other cells, have an intimate relationship
with the endoneurium and are also susceptible to mechanical loads.
Changes in the myelin sheath, modification of the structure of the
Ranvier node and reduction of sodium channels density are some of
the reactions of these structures to excessive mechanical loads. Jou and
collaborators [23] found reversible conduction blocks in nerves
submitted to 8% of strain. In 50% of these nerves the conduction
became irreversible after 16% of strain. It is possible that the stretch of
the node of Ranvier, changed its wavy characteristic and impaired
impulse transmission [23-25].

Finally, neuronal function is closely related to the synthesis of
proteins and axonal transport, which are complex phenomena not
fully understood [26]. An abnormal axonal transport can start a cycle
of degeneration and cell death [27-29]. After a peripheral nerve injury,
signaling via retrograde axonal transport is responsible for initiating
the cascade responsible for the degeneration and subsequent nerve
regeneration, when possible [30,31]. If this transport is insufficient or
inaccurate, there will be prejudice to the repair process. Thus axonal
transport is a major target when the goal is to stimulate peripheral
nerve regeneration [32]. Although not clearly determined yet, it is
possible that neurodynamic maneuvers may increase axonal transport
and positively influence peripheral nerve regeneration. Another
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possibility is that nerve stress itself may be a conditioning lesion,
which is able to increase the regenerative process [33].

Nerve biomechanics and pathomechanics
The presence of structures that respond to mechanical loads in the

peripheral nervous system makes the biomechanics and
pathomechanic important aspects to be considered both in normal,
and in pathological conditions. However, in most cases the nerve
biomechanics studies discuss only extreme situations, such as a
gradual nerve stretching during limb elongation or in surgical
conditions. Conversely, the majority of mechanical loads are imposed
on the nerves by posture, movements and mild trauma [34]. However,
there is a lack of experimental data on nerve biomechanics in these
circumstances, and the majority of our understanding about this topic
comes from studies approaching structural properties such as nerve
anatomy, or experimental data from laboratory animal trials.

Biomechanical properties of the peripheral nerves are conferred
mainly by the presence of collagen tissue and liquids. Because of the
diversity of collagen types composing the epi, peri and endoneurium,
peripheral nerves have a viscoelastic characteristic that allows resisting
to mechanical loads, such as changes in length, compression and
traction. The resistance to traction is more characteristic of peri and
endoneurial layers, while the epineurium is more resistant to
compressive forces [35,36]. This is because the response to mechanical
traction occurs from the inner to the outermost layers, while in
compression, the opposite happens. This means that the tensile
mechanical loads will affect mainly the deepest structures in the
peripheral nerves [37]. Studies in sciatic nerves of rats have
demonstrated that, when submitted to mechanical tension, nerve
structure starts to fail at the perineurium, followed by the axons and
endoneurium, and finally the epineurial sheath [38,39].

The interaction with adjacent tissues also allows peripheral nerves
to adapt to the imposed shear and compression forces, stretching,
repeated stresses and combinations of these different types of
mechanical loadings [40]. The elongation or tensile loads can be
applied in parallel or perpendicular to the nerve, causing longitudinal
or transverse forces. When joint movement stretches the nerve
surrounding tissues, the nerve itself is placed under tension and reacts
to stress both lengthening as sliding [41]. The deformation or change
in nerve length induced by longitudinal stress is called tension stress.
When there is displacement or sliding over the nerve bed, this
movement is called excursion, in other words there is dislocation of
the nerve from one point to another [41].

Traction can also cause nerve excursion and simultaneously
produce changes in pressure within the nerve. The elongation of the
nerve bed during joint movement will cause an increase in tension
[37]. The magnitude of the increase in pressure will be higher as close
as the nerve is from the moving joint. The tissue response is dependent
on the magnitude and duration of the mechanical load. Data indicate
that elongations of 6% to 8% for a short period causes transitional
physiological changes that appear to be within normal tissue tolerance,
while 11% or more causes long-term damage and may be regarded as a
state of excessive or extreme tension [42].

Compression or crushing is another way of influencing nerve
physiology through mechanical loads. Compressing a nerve may be
the result of extraneural force or can occur secondarily by increasing
the longitudinal tension [43]. Compressive loads of low magnitude
and short duration can result in reversible structural and physiological

changes. However, high magnitudes of compression may result in
structural changes in myelin sheaths, and axons, and even rupture of
the nerve [40]. This can also happen with low magnitude loads only if
applied over a long period of time. In this case the structural changes
in the nerve will be secondary to insufficiency of blood irrigation and
the consequences of ischemia.

Mechanical loads can also influence nerve physiology and response
to lesion by other ways such as progenitor cells, neuronal migration,
axon elongation, synaptogenesis and developing of neural networks
[44-46]. All these factors are fundamental in peripheral nerve
regeneration, and would place neurodynamic mobilization as a way to
influence not only structural, but functional properties of peripheral
nerves (Figure 2).

Peripheral nerve injury and regeneration
Peripheral nerve injuries are common, disabling and difficult to

treat, varying widely in the extent and severity of the injury. The
nerves are exposed to various types of lesions including compression,
crushing and transection. The type of injury also has a major influence
on functional recovery. The simplest peripheral nerve injury
classification was provided by Seddon, who grouped the lesions in
neurapraxia, axonotmesis and neurotmesis [11,47].

Figure 2: Damaged nerve submitted to mechanical loads will react
according to many factors, including the lesion degree and
mechanical properties of the nerve itself.

In neurapraxia there is no loss of axonal continuity between the
neuron and the innervated structure. There is only block of nerve
conduction as a consequence of myelin sheath damage. This injury
involves the inability of an action potential to propagate beyond a
specific region of the axon, and an important aspect is its reversibility
[11,48]. The conduction block usually affects motor fibers more than
sympathetic or sensory fibers, and a typical example is the "Saturday
night palsy"[11]. This lesion involves prolonged compression of the
radial nerve on the forearm by a chair or the head of a friend. Another
example is the common peroneal nerve compression, which happens
when the legs are kept crossed for long periods. The consequences are
temporary, with no histological change. However, as the compressive
force persists, there is demyelination and, subsequently, remyelination
at the site of lesion [49].
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In axonotmesis, axons are affected and shortly after there is axonal
injury. The proximal portion of the axon suffers traumatic
degeneration in the damaged area, and the death of the cell body itself
may occur, depending on the mechanism and severity of the injury.
The collapse of the distal axon (Wallerian degeneration) is started 30
to 96 hours after transection. The deterioration of myelin begins and
the axon becomes disorganized. The progression is completed about
one week after the beginning of the injury [50].

The retrograde reaction leads the cell body to swell. There is
chromatolysis, a process in which granules Nissl (endoplasmic
reticulum of groups and free ribosomes) is fragmented and the cell
body becomes relatively eosinophilic. The cell nucleus is displaced to
the periphery, which reflects a metabolic change. At the same time
there is the onset of the regenerative events, with an increased
expression of proteins to assist in the repair and axonal growth.
Schwann cells proliferate and phagocyte axonal and myelin debris.
Nerve damage may disrupt the blood-nerve barrier. In this phase there
is an increase in size and number of glial cells, which starts at 24-48
and reaches its peak in a week [51].

Neurotmesis refers to an injury of the whole nerve trunk, including
connective tissues. The epineurium is damaged, therefore separating
the proximal from the distal stump. All changes resulting from an
axonotmesis occur in the same way in neurotmesis. The difference
between them is that the prognosis of the injury is much worse, the
retrograde changes are much more serious, and the majority of the
neurons do not survive. Furthermore, the spaces between the two
segments of the sectioned nerve can be blocked by fibrosis, and this
may pose a major obstacle in nerve regeneration [48].

Chronic compression of the peripheral nerves are another form of
injury; different from stretching injuries, acute compressions [52] and
transections, they start with compressive external mechanical loads
that generate intraneural edema, and gradually there is reduced flow in
the vessels supplying the nerve (Vasa nervorum). There is a local
ischemia, which has an immediate effect on the ability of axons to
transmit action potentials. As the compression becomes more severe
there is demyelination, followed by axonal damage, scarring and
fibrosis. Fibrosis in turn affect the nerve movement over its bed,
creating adhesions to surrounding tissues [53,54]. The effect of
compression may be exacerbated when the nerves are in osteofibrous
tunnels, generating compressive neuropathies such as carpal tunnel
syndrome and sciatic nerve compression [55].

After the degeneration Schwann cells start to align longitudinally to
the nerve, creating columns of cells called Büngner bands that provide
a favorable microenvironment for growth promotion and regenerating
axons. There is shrinking of endoneurial tubes, and Schwann cells and
macrophages fulfill their ends. At the tip of the regenerating axon
there are the growth cones, with the capacity to explore the
microenvironment and for that they equipped with specialized
mobility. The growth cone consists of flat sheets of matrix structure,

called lamelopodia, from which a number of finger-like projections
called filopodia, protrude and exploit the microenvironment [56].

The filopodia are electrophilic and attach themselves to cationic
regions of the basal lamina. Within filopodia are actin filaments, which
are able to produce axonal elongation and contraction. Growth cones
release proteases that dissolve the extracellular matrix to clear the way
and move on towards the target organ [51].

The growth cone responds to neurotrophic factors that are
macromolecular proteins in sensory receptors. Schwann cells along the
regeneration path also release these factors. These factors help in
survival, length and maturation of regenerating axon. Fibronectin and
fibrinogen are precursors of matrix formation these are polymerized to
form a fibrin matrix, which is an important substrate for cell migration
in nerve regeneration [6].

Axons growing in a stable condition take 8-15 days to reach the
endoneurial tubes. When they finally reach the distal region of the
endoneurial tube containing the Schwann cells, alignment arises
between them and it starts a rotation movement around the axon to
form the myelin sheath. With myelination there is a larger number of
nodes of Ranvier, causing shorter internodal segments. The growth
rate varies from nerve to nerve. The median grows 2-4 mm/ day, ulnar
1.5 mm/day and radial, 4.5 mm/day. On average, the regeneration
speed is 1 mm/day [57].

Role imposing graduated mechanical loads (neurodynamic
mobilization) in peripheral nerve regeneration

We propose that the neurodynamic mobilization could positively
influence the peripheral nerve regeneration through the following
mechanisms: a) Reduction of edema; b) Normalization of
axoplasmatic flow; c) Decrease in abnormal nerve mechanosensitivity,
with consequent reduction of hyperalgesia and neurogenic
inflammation; d) Promotion of appropriate nerve mobility, reducing
susceptibility to trauma; e) Increased neuronal and glial activity
(Schwann cells) through stimulation of movement dependent
receptors in the cell membrane.

The neurodynamic maneuvers can be classified into two types, the
tensioners and sliding (Figure 3). In the former, the aim is to impose
pressure on the nerve structure, which is achieved from movements in
body segments that increase the distance from fixation sites of the
nerves. If we take into account the median nerve and its attachments
in the brachial plexus and carpal tunnel, in a tensioning maneuver the
fist would be extended, while the neck would be tilted to the other side
of the mobilized segment [58] (Figure 3). Sliding maneuvers, on the
contrary, will promote alternate movements in these attachment
regions so that the nerve structure would be conducted to slide over its
bed. Using the previous example, the neck and the fist would be
moved simultaneously, but with extension of the fist, the head would
move at the same time ipsilaterally [58]. (Figure 3)
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Figure 3: Neurodynamic Mobilization can be either, sliding (left) or tensioning (right), depending on the synchronization of limbs and axial
movements. In this illustration, upper limb and neck/head can move in the same or opposite directions.

As intraneural edema is an important factor in peripheral nerve
injury [59] and the swelled nerve is more subject to compressive
lesions [53], the sliding maneuvers would probably be more beneficial
in the acute phase, allowing the nervous drainage and increasing
axoplasmatic flow by means of oscillatory movements. Moreover,
these maneuvers would prevent the increase in intraneural pressure
that could compress the nerve fibers and reduce neural irrigation,
leading to ischemia and conduction block.

In the chronic phase, especially in lesions that underwent surgery,
intraneural fibrosis may be a factor to limit its normal functioning. In
this case the tensioners maneuvers would have an important role in
promoting a gradual increase in the length of Scwhann cells body and
internodes [60]. Since in this situation the risk of axonal injury would
be higher due to increased pressure intrafascicular, control of
symptoms during the mobilization would be mandatory to establish
optimal loads.

The movement disorders in peripheral nerves seem to be
accompanied by increased mechanosensitivity [61-63], although this
phenomenon is not unanimous [64]. Recent concepts of the gate
control theory of pain control support that non-aggressive movement
may lessen the pain [65,66]. Both sliding and tensioning maneuvers
made prior to the amplitude of pain could reduce the
mechanosensitivity via Nervi nervorum – the innervation of the nerve.
An appropriate and perception control of symptoms during the
intervention could be guide the treatment dose. Similar maneuvers but
actively performed by the individual should be included to enhance
the effect of treatment.

Although evidence from experimental studies occasionally argues
against the use of mechanical loads to promote peripheral nerve
regeneration [67], detailed monitoring of motor, sensory and
autonomic symptoms can enable a treatment focused on the
individuality of the patient and support or not its continued use. The
understanding of normal nerve mechanics can also help people to
avoid positions and postures that can be a source of peripheral nerve
injury or surgical sutures disruption, preventing damage caused by
excessive stresses [68,69]. Mobilization can also promote greater

specificity in the motor reinnervation, increasing the number of
regenerated axons and decreasing the expression of glial proteins
linked to degeneration and pain [70].

Future studies may be addressed to fulfill a number of gaps in this
area, including the assessment of the impact of Nerve Mobilization on
axonal transport, edema formation and drainage, fibrosis formation
and abnormal mechanosensitivity. Although studies with laboratory
animals may offer relevant basic data, joining nerve tensioning
maneuvers with a number of resources such as ultrasound and
magnetic resonance imaging and electrophysiological testing of the
peripheral nerve can help to clarify what happens in different diseases
involving nerve degeneration/regeneration and abnormal
biomechanics in humans. These diseases include, but are not restricted
to, grade III carpal tunnels syndrome, diabetic and leprosy neuropathy
and sutures of damaged peripheral nerves. Correlations between
biomechanical limitations, signs and symptoms, imaging and
electrophysiological testing may help to establish when Neurodynamic
Mobilization will or not be a good alternative to positively influence
nerve regeneration.

Conclusion
The peripheral nerve has a normal mechanical behavior that is

altered in the presence of lesions. Maneuvers that impose gradual
mechanical loading may be beneficial to promote peripheral nerve
regeneration via a series of mechanical and physiological factors.
Excessive mechanical stress can be deleterious, but an adequate clinical
follow-up can help prevent such effects. This follow-up may include
the use of neurodynamic tensioning maneuvers together with imaging
and electrophysiological techniques, in order to identify when and
how neurodynamic mobilization should or not be used to positively
influence nerve regeneration.
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