Neutrophil Adhesion and Migration: Another Role of the Glucose-6-Phosphate Transporter

Hyun Sik Jun*1 and Janice Y Chou*2

1Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong 339-700, Republic of Korea
2Section on Cellular Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

*Corresponding author: Janice Y Chou, Building 10, Room 9D42, NIH, 10 Center Drive, Bethesda, MD 20892-1830, USA, Tel: 301-496-1094; Fax: 301-462-6035; E-mail: chouja@mail.nih.gov

Copyright: © 2017 Jun HS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords: Glycogen storage disease type Ib; Glucose-6-phosphate transporter; Neutrophil adhesion; CD11a; CD11b

Commentary

Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in a glucose-6-phosphate transporter (G6PT) that belongs to the solute-carrier-37 family of endoplasmic reticulum (ER)-associated sugar-phosphate/phosphate exchangers [1,2]. The primary in vivo function of the ubiquitously expressed G6PT protein is to translocate G6P from the cytoplasm into the ER lumen where it couples with either the liver/kidney/intestine-restricted glucose-6-phosphatase-α (G6Pase-α) or the ubiquitously expressed G6Pase-β to hydrolyze G6P to glucose and phosphate [3,4]. The G6PT/G6Pase-α complex maintains interprandial glucose homeostasis and the G6PT/G6Pase-β complex maintains neutrophil energy homeostasis and functionality. Therefore, GSD-Ib is an autosomal recessive metabolic and immune disorder characterized by impaired glucose homeostasis, neutropenia and neutrophil dysfunction [3,4]. Recently, we showed that G6PT-deficient neutrophils from GSD-Ib patients receiving granulocyte-colony stimulating factor (G-CSF) therapy exhibited impaired energy homeostasis and function [5], suggesting that G6PT-regulated G6P metabolism is important for neutrophil function. However, G-CSF failed to correct impaired neutrophil energy homeostasis in GSD-Ib [5].

Neutrophils are the most abundant leukocytes in peripheral blood that play a critical role in host defence by eliminating invading pathogens. Upon infections, neutrophils migrate from peripheral blood stream into inflammatory sites which is a tightly regulated process involving three distinct steps, selectin-mediated rolling, firm adhesion via integrins and transmigration into infected tissues [6]. Neutrophil adhesion is mediated by lymphocyte function-associated antigen 1 (LFA-1) and macrophage-1 antigen (Mac-1), members of the β2 integrin family that are predominantly expressed on neutrophils [6,7]. LFA-1 and Mac-1 are heterodimers composed of a distinct α subunit (CD11a for LFA-1 and CD11b for Mac-1) and a β subunit (CD18). Studies have shown that mutations in CD18 cause leukocyte adhesion deficiency syndrome type I, characterized by life-threatening recurrent bacterial infections resulting from severe defects in neutrophil/monocyte emigration to extravascular sites of inflammation [8]. However, genetic mutations in CD11a and CD11b have not been reported.

More recently, our research group demonstrated that GSD-Ib (G6pt-/-) mice exhibited neutropenia in both blood and bone marrow, and G-CSF treatment increased both the frequency and the absolute neutrophil counts in the peripheral bloodstream [9]. However, neutrophil recruitment into the peritoneal cavity during peritonitis remains impaired in G-CSF-treated G6pt-/- mice [9]; suggesting G-CSF therapy cannot rescue impairment in neutrophil adhesion and migration. We also provided evidence showing that the decrease in the expression of CD11a and CD11b on G6pt-/- neutrophils underlies, at least in part, the impairment in neutrophil recruitment to the inflammation sites. Both CD11a and CD11b are glycoproteins [10]. While the glycosylated CD11b (170 kDa) was the primary species identified in wild-type neutrophils, both glycosylated and unglycosylated (~130 kDa) CD11b were found in G6pt-/- deficient neutrophils [9]. We have shown that impaired neutrophil recruitment into the peritoneal cavity is a characteristic of G6Pase-β deficiency [11]. Moreover, G6Pase-β deficiency is associated with a major defect of protein glycosylation [12]. The G6PT/G6Pase-β complex regulates glucose homeostasis in the ER of neutrophils and the ER lumen serves as a critical site in protein maturation and its biochemical environment is uniquely designed to facilitate optimal post-translational modifications [13]. Therefore, G6P may regulate protein glycosylation.

G-CSF is widely used to treat neutropenia patients including GSD-Ib and G6Pase-β deficiency [14,15]. We have shown that G-CSF cannot correct impaired energy homeostasis in G6PT-deficient neutrophils in human GSD-Ib patients [5]. We recently showed that this growth factor also fails to rescue impaired neutrophil recruitment in G6pt-/- mice [9], highlighting the limitations of G-CSF in treating patients exhibiting neutrophil dysfunction. Understanding the functional roles of G6P and/or G6Pase-β in neutrophils would facilitate the development of novel therapeutic approaches to address neutrophil dysfunction.

References


J Glycobiol, an open access journal
ISSN:2168-958X
Volume 6 • Issue 1 • 1000124

DOI: 10.4172/2168-958X.1000124